Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e8ef6edb66e20da7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e8ef6edb66e20da7_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso09/7f4d0272-839f-452d-bd43-dabda63396ab
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000209
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 25000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e8ef6edb66e20da7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 90
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6f911363-8c0f-4331-9742-a2fb57ee53b7
wandb_project: 09a
wandb_run: your_name
wandb_runid: 6f911363-8c0f-4331-9742-a2fb57ee53b7
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

7f4d0272-839f-452d-bd43-dabda63396ab

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.6611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000209
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 90
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 19868

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 11.0932
86.0282 0.2517 500 10.7382
85.8172 0.5033 1000 10.7085
85.7517 0.7550 1500 10.6967
86.061 1.0067 2000 10.6913
85.6738 1.2583 2500 10.6858
85.6973 1.5100 3000 10.6809
85.606 1.7617 3500 10.6779
85.6544 2.0133 4000 10.6755
85.5822 2.2650 4500 10.6731
85.5585 2.5167 5000 10.6715
85.4748 2.7683 5500 10.6698
85.595 3.0200 6000 10.6687
85.5199 3.2717 6500 10.6679
85.4948 3.5233 7000 10.6668
85.4707 3.7750 7500 10.6663
85.4624 4.0267 8000 10.6661
85.5253 4.2783 8500 10.6653
85.4998 4.5300 9000 10.6647
85.4906 4.7817 9500 10.6645
85.452 5.0333 10000 10.6634
85.4633 5.2850 10500 10.6634
85.4769 5.5367 11000 10.6628
85.4446 5.7883 11500 10.6628
85.5044 6.0400 12000 10.6627
85.512 6.2917 12500 10.6621
85.452 6.5433 13000 10.6623
85.4906 6.7950 13500 10.6617
85.4964 7.0467 14000 10.6618
85.4633 7.2984 14500 10.6616
85.4613 7.5500 15000 10.6616
85.4375 7.8017 15500 10.6616
85.4846 8.0534 16000 10.6613
85.449 8.3050 16500 10.6614
85.4237 8.5567 17000 10.6613
85.4712 8.8084 17500 10.6611
85.4472 9.0600 18000 10.6611
85.4579 9.3117 18500 10.6610
85.4644 9.5634 19000 10.6611
85.4548 9.8150 19500 10.6611

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso09/7f4d0272-839f-452d-bd43-dabda63396ab

Adapter
(255)
this model