Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Genstruct-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b80f23051204266f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b80f23051204266f_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: chosen
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso03/f655b30e-9601-4e20-b06a-658e7a047624
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000203
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 4
mlflow_experiment_name: /tmp/b80f23051204266f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 30
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 969dfa88-167d-45c2-9b21-58de3b3b0dc0
wandb_project: 03a
wandb_run: your_name
wandb_runid: 969dfa88-167d-45c2-9b21-58de3b3b0dc0
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

f655b30e-9601-4e20-b06a-658e7a047624

This model is a fine-tuned version of NousResearch/Genstruct-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000203
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 30
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 0.7111
1.5146 0.1604 500 0.2160
1.0895 0.3209 1000 0.1361
0.8576 0.4813 1500 0.1046

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso03/f655b30e-9601-4e20-b06a-658e7a047624

Adapter
(157)
this model