See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/tinyllama-chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6aa66a4d42b5a6eb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6aa66a4d42b5a6eb_train_data.json
type:
field_instruction: la
field_output: en
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/b77aa27f-5bf9-47f7-b0b4-2c8bf1148393
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/6aa66a4d42b5a6eb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 3e15f779-14de-4014-9f0c-985ed3bc54da
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3e15f779-14de-4014-9f0c-985ed3bc54da
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
b77aa27f-5bf9-47f7-b0b4-2c8bf1148393
This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1631
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 2.8033 |
2.5753 | 0.0057 | 17 | 2.4595 |
2.3122 | 0.0113 | 34 | 2.3222 |
2.2695 | 0.0170 | 51 | 2.2697 |
2.4105 | 0.0226 | 68 | 2.2376 |
2.278 | 0.0283 | 85 | 2.2114 |
2.176 | 0.0339 | 102 | 2.1973 |
2.1839 | 0.0396 | 119 | 2.1822 |
2.1891 | 0.0452 | 136 | 2.1735 |
2.2514 | 0.0509 | 153 | 2.1679 |
2.2296 | 0.0565 | 170 | 2.1642 |
2.3249 | 0.0622 | 187 | 2.1631 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for leixa/b77aa27f-5bf9-47f7-b0b4-2c8bf1148393
Base model
unsloth/tinyllama-chat