See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2-2b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 73375d24ed8729fa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/73375d24ed8729fa_train_data.json
type:
field_input: file_name
field_instruction: file_content
field_output: extracted_data
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/90785616-9f4d-41ed-bfa4-7ba9717653c8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/73375d24ed8729fa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 63bc111e-9e7e-49b3-a847-d276a7a4c990
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 63bc111e-9e7e-49b3-a847-d276a7a4c990
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
90785616-9f4d-41ed-bfa4-7ba9717653c8
This model is a fine-tuned version of unsloth/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0148 | 1 | 0.2310 |
0.0167 | 0.2519 | 17 | 0.0149 |
0.0094 | 0.5037 | 34 | 0.0097 |
0.0054 | 0.7556 | 51 | 0.0088 |
0.0073 | 1.0074 | 68 | 0.0074 |
0.005 | 1.2593 | 85 | 0.0072 |
0.0056 | 1.5111 | 102 | 0.0064 |
0.0053 | 1.7630 | 119 | 0.0062 |
0.0059 | 2.0148 | 136 | 0.0061 |
0.0059 | 2.2667 | 153 | 0.0058 |
0.0041 | 2.5185 | 170 | 0.0057 |
0.0044 | 2.7704 | 187 | 0.0057 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for leixa/90785616-9f4d-41ed-bfa4-7ba9717653c8
Base model
unsloth/gemma-2-2b