See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cf49a35e7813ed83_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cf49a35e7813ed83_train_data.json
type:
field_input: ''
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/8149c9bf-e4d9-4284-93d7-33d8c84f227e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/cf49a35e7813ed83_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 3be38f16-0e2e-4162-bd32-8f682df81903
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3be38f16-0e2e-4162-bd32-8f682df81903
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8149c9bf-e4d9-4284-93d7-33d8c84f227e
This model is a fine-tuned version of EleutherAI/pythia-410m-deduped on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8430
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 1.9695 |
7.8208 | 0.0118 | 17 | 1.9368 |
7.8795 | 0.0236 | 34 | 1.9197 |
7.5471 | 0.0353 | 51 | 1.9101 |
7.8016 | 0.0471 | 68 | 1.8946 |
7.6985 | 0.0589 | 85 | 1.8797 |
7.3393 | 0.0707 | 102 | 1.8674 |
7.3281 | 0.0824 | 119 | 1.8567 |
7.3309 | 0.0942 | 136 | 1.8518 |
7.4152 | 0.1060 | 153 | 1.8465 |
7.5195 | 0.1178 | 170 | 1.8445 |
7.6441 | 0.1295 | 187 | 1.8430 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for leixa/8149c9bf-e4d9-4284-93d7-33d8c84f227e
Base model
EleutherAI/pythia-410m-deduped