|
--- |
|
library_name: transformers |
|
datasets: |
|
- leduckhai/VietMed-Sum |
|
language: |
|
- vi |
|
pipeline_tag: summarization |
|
--- |
|
|
|
# Real-time Speech Summarization for Medical Conversations |
|
|
|
<p align="center"> |
|
<img src="RTSS_diagram.png" alt="drawing" width="900"/> |
|
</p> |
|
|
|
Please cite this paper: https://arxiv.org/abs/2406.15888 |
|
|
|
@article{VietMed_Sum, |
|
title={Real-time Speech Summarization for Medical Conversations}, |
|
author={Le-Duc, Khai and Nguyen, Khai-Nguyen and Vo-Dang, Long and Hy, Truong-Son}, |
|
journal={arXiv preprint arXiv:2406.15888}, |
|
booktitle={Interspeech 2024}, |
|
url = {https://arxiv.org/abs/2406.15888}, |
|
year={2024} |
|
} |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
This model summarizes medical dialogues in Vietnamese. It can work in tandem with an ASR system to provide real-time dialogue summary. |
|
|
|
- **Developed by:** Khai-Nguyen Nguyen |
|
- **Language(s) (NLP):** Vietnamese |
|
- **Finetuned from model [optional]:** ViT5 |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
Install the pre-requisite packages in Python. |
|
```python |
|
pip install transformers |
|
``` |
|
|
|
|
|
Use the code below to get started with the model. |
|
|
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
# Initialize the pipeline with the ViT5 model, specify the device to use CUDA for GPU acceleration |
|
pipe = pipeline("text2text-generation", model="monishsystem/medisum_vit5", device='cuda') |
|
|
|
# Example text in Vietnamese describing a traditional medicine product |
|
example = "Loại thuốc này chứa các thành phần đông y đặc biệt tốt cho sức khoẻ, giúp tăng cường sinh lý và bổ thận tráng dương, đặc biệt tốt cho người cao tuổi và người có bệnh lý nền" |
|
|
|
# Generate a summary for the input text with a maximum length of 50 tokens |
|
summary = pipe(example, max_new_tokens=50) |
|
|
|
# Print the generated summary |
|
print(summary) |
|
``` |