Edit model card

This model can be used to generate an input caption from a SMILES string.

Example Usage

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')

input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Paper

For more information, please take a look at our paper.

Paper: Translation between Molecules and Natural Language

Authors: Carl Edwards*, Tuan Lai*, Kevin Ros, Garrett Honke, Heng Ji

Downloads last month
531
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.