license: apache-2.0
datasets:
- amphora/QwQ-LongCoT-130K-2
language:
- en
metrics:
- perplexity
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
Model Details:
- Base Model: Qwen/Qwen2-0.5B-Instruct
- Teacher Model: Qwen/QwQ-32B-Preview
- Distillation Framework: Instruction Tuning
- Task Type: Conversational AI / Causal Language Modeling
- Parameters: 0.5B
- Special Features:
- Integrated gradient checkpointing for efficient training
- Step-by-step reasoning capabilities for better problem-solving
Training:
QwQ-0.5B-Distilled was trained using the QwQ-LongCoT-130K dataset, a carefully curated collection of long-context examples designed for reasoning and conversational AI tasks. The GKD framework ensures that the student model mimics the teacher modelβs outputs, aligning its predictions with high-quality responses.
Training Progress:
[ββββββββββ] 100%
Training Script:
import os
import argparse
import torch
from datasets import Dataset
from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
from datasets import load_dataset
from peft import LoraConfig
parser = argparse.ArgumentParser()
parser.add_argument("--max_length", type=int, default = 4096)
parser.add_argument("--output_dir", type=str, default="gkd-model")
parser.add_argument("--per_device_train_batch_size", type=int, default=1)
parser.add_argument("--gradient_accumulation_steps", type=int, default=16)
parser.add_argument("--gradient_checkpointing", action="store_true", default=False)
parser.add_argument("--resume_from_checkpoint", action="store_true", default=False)
parser.add_argument("--lora", action="store_true")
args = parser.parse_args()
qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K", split = "train")
messages = []
for each in qwq_dataset:
msg = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": each["problem"]},
{"role": "assistant", "content": each["qwq"]},
]
messages.append(msg)
TRAIN_SPLIT_RATIO = 0.9
train_size = int(TRAIN_SPLIT_RATIO * len(messages))
eval_size = len(messages) - train_size
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The model to optimise
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
### Real Dataset
train_dataset = Dataset.from_dict({"messages":messages[:train_size]})
eval_dataset = Dataset.from_dict({"messages":messages[train_size:]})
training_args = SFTConfig(
output_dir=args.output_dir,
max_seq_length=args.max_length,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing = args.gradient_checkpointing,
save_steps = 100,
save_total_limit = 5
)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
response_template = "<|im_start|>assistant\n"
collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer)
trainer = SFTTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=lora_config if args.lora else None,
data_collator=collator,
)
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
Dataset:
- Source:
amphora/QwQ-LongCoT-130K
- Split: 90% Training, 10% Evaluation
Example Usage:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Model name
model_name = "kz919/QwQ-0.5B-Distilled-SFT"
# Load the model
print(f"Starting to load the model {model_name} into memory")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map={"": 0}
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define the prompt
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
# Tokenize the input
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# Decode the response
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Applications:
Conversational Assistants:
Suitable for AI chatbots that require reasoning and long-context understanding.Educational Tools:
Provides step-by-step explanations, making it ideal for learning environments.Creative Writing:
Assists in generating coherent, contextually aware long-form content.Technical Support:
Handles complex customer queries with precision and clarity.
Limitations:
- While distilled for efficiency, performance on highly complex reasoning tasks may slightly trail the teacher model.
- Warning π¨π¨π¨: This model is not fully trained, merely a proof of concept. Don't yell at me if it's outputing nonesense.
Citation:
If you use this model in your research or applications, please cite it as:
@model{qwq_0.5B_distilled,
author = {Kaizhao Liang},
title = {QwQ-0.5B-Distilled: A Reasoning Model for Edge Devices},
year = {2024},
publisher = {Hugging Face},
version = {1.0}
}
This model is an example of how efficient fine-tuning and distillation methods can deliver robust conversational AI capabilities in a smaller, more manageable footprint.