kalmuraee commited on
Commit
c9f2e71
·
1 Parent(s): 586273c

Create new file

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Importing all the necessary packages
2
+ import nltk
3
+ import librosa
4
+ import torch
5
+ import gradio as gr
6
+ from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
7
+ nltk.download("punkt")
8
+
9
+
10
+ model_name = "kalmuraee/tokens"
11
+ tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
12
+ model = Wav2Vec2ForCTC.from_pretrained(model_name)
13
+
14
+ def load_data(input_file):
15
+
16
+ #reading the file
17
+ speech, sample_rate = librosa.load(input_file)
18
+ #make it 1-D
19
+ if len(speech.shape) > 1:
20
+ speech = speech[:,0] + speech[:,1]
21
+ #Resampling the audio at 16KHz
22
+ if sample_rate !=16000:
23
+ speech = librosa.resample(speech, sample_rate,16000)
24
+ return speech
25
+
26
+
27
+ def correct_casing(input_sentence):
28
+
29
+ sentences = nltk.sent_tokenize(input_sentence)
30
+ return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
31
+
32
+
33
+ def asr_transcript(input_file):
34
+
35
+ speech = load_data(input_file)
36
+ #Tokenize
37
+ input_values = tokenizer(speech, return_tensors="pt").input_values
38
+ #Take logits
39
+ logits = model(input_values).logits
40
+ #Take argmax
41
+ predicted_ids = torch.argmax(logits, dim=-1)
42
+ #Get the words from predicted word ids
43
+ transcription = tokenizer.decode(predicted_ids[0])
44
+ #Correcting the letter casing
45
+ transcription = correct_casing(transcription.lower())
46
+ return transcription
47
+
48
+
49
+
50
+
51
+ gr.Interface(asr_transcript,
52
+ inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"),
53
+ outputs = gr.outputs.Textbox(label="Output Text"),
54
+ title="ASR using Wav2Vec 2.0",
55
+ description = "This application displays transcribed text for given audio input",
56
+ examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch()