update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: tokens
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# tokens
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9811
|
20 |
+
- Wer: 0.4608
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 30
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 6.5212 | 0.59 | 400 | 3.3776 | 1.0 |
|
56 |
+
| 2.4798 | 1.18 | 800 | 1.0697 | 0.7740 |
|
57 |
+
| 1.0057 | 1.77 | 1200 | 0.7077 | 0.6487 |
|
58 |
+
| 0.7731 | 2.36 | 1600 | 0.6113 | 0.5883 |
|
59 |
+
| 0.6917 | 2.94 | 2000 | 0.5618 | 0.5573 |
|
60 |
+
| 0.5844 | 3.53 | 2400 | 0.5610 | 0.5532 |
|
61 |
+
| 0.5606 | 4.12 | 2800 | 0.5584 | 0.5484 |
|
62 |
+
| 0.4973 | 4.71 | 3200 | 0.5466 | 0.5333 |
|
63 |
+
| 0.4721 | 5.3 | 3600 | 0.5495 | 0.5178 |
|
64 |
+
| 0.4439 | 5.89 | 4000 | 0.5667 | 0.5237 |
|
65 |
+
| 0.3965 | 6.48 | 4400 | 0.5865 | 0.5322 |
|
66 |
+
| 0.3876 | 7.07 | 4800 | 0.6099 | 0.5135 |
|
67 |
+
| 0.3407 | 7.66 | 5200 | 0.5891 | 0.5228 |
|
68 |
+
| 0.33 | 8.25 | 5600 | 0.6135 | 0.5072 |
|
69 |
+
| 0.3032 | 8.84 | 6000 | 0.6004 | 0.5028 |
|
70 |
+
| 0.2706 | 9.43 | 6400 | 0.6321 | 0.4991 |
|
71 |
+
| 0.2709 | 10.01 | 6800 | 0.6541 | 0.5051 |
|
72 |
+
| 0.2373 | 10.6 | 7200 | 0.6613 | 0.5119 |
|
73 |
+
| 0.2284 | 11.19 | 7600 | 0.6798 | 0.5086 |
|
74 |
+
| 0.212 | 11.78 | 8000 | 0.6509 | 0.4910 |
|
75 |
+
| 0.1983 | 12.37 | 8400 | 0.7018 | 0.5043 |
|
76 |
+
| 0.1947 | 12.96 | 8800 | 0.6826 | 0.4965 |
|
77 |
+
| 0.1717 | 13.55 | 9200 | 0.7056 | 0.4828 |
|
78 |
+
| 0.1741 | 14.14 | 9600 | 0.7544 | 0.5060 |
|
79 |
+
| 0.1626 | 14.73 | 10000 | 0.7331 | 0.4915 |
|
80 |
+
| 0.1529 | 15.32 | 10400 | 0.7518 | 0.4772 |
|
81 |
+
| 0.1504 | 15.91 | 10800 | 0.7362 | 0.4732 |
|
82 |
+
| 0.1401 | 16.49 | 11200 | 0.7179 | 0.4769 |
|
83 |
+
| 0.1335 | 17.08 | 11600 | 0.7716 | 0.4826 |
|
84 |
+
| 0.1185 | 17.67 | 12000 | 0.7465 | 0.4798 |
|
85 |
+
| 0.1182 | 18.26 | 12400 | 0.8105 | 0.4733 |
|
86 |
+
| 0.1135 | 18.85 | 12800 | 0.7693 | 0.4743 |
|
87 |
+
| 0.1098 | 19.44 | 13200 | 0.8362 | 0.4888 |
|
88 |
+
| 0.1023 | 20.03 | 13600 | 0.8427 | 0.4768 |
|
89 |
+
| 0.1003 | 20.62 | 14000 | 0.8079 | 0.4741 |
|
90 |
+
| 0.0936 | 21.21 | 14400 | 0.8551 | 0.4651 |
|
91 |
+
| 0.0875 | 21.8 | 14800 | 0.8462 | 0.4712 |
|
92 |
+
| 0.0843 | 22.39 | 15200 | 0.9177 | 0.4782 |
|
93 |
+
| 0.0846 | 22.97 | 15600 | 0.8618 | 0.4735 |
|
94 |
+
| 0.08 | 23.56 | 16000 | 0.9017 | 0.4687 |
|
95 |
+
| 0.0789 | 24.15 | 16400 | 0.9034 | 0.4659 |
|
96 |
+
| 0.0717 | 24.74 | 16800 | 0.9690 | 0.4734 |
|
97 |
+
| 0.0714 | 25.33 | 17200 | 0.9395 | 0.4677 |
|
98 |
+
| 0.0699 | 25.92 | 17600 | 0.9222 | 0.4608 |
|
99 |
+
| 0.0658 | 26.51 | 18000 | 0.9222 | 0.4621 |
|
100 |
+
| 0.0612 | 27.1 | 18400 | 0.9691 | 0.4586 |
|
101 |
+
| 0.0583 | 27.69 | 18800 | 0.9647 | 0.4581 |
|
102 |
+
| 0.0596 | 28.28 | 19200 | 0.9820 | 0.4614 |
|
103 |
+
| 0.056 | 28.87 | 19600 | 0.9795 | 0.4596 |
|
104 |
+
| 0.055 | 29.45 | 20000 | 0.9811 | 0.4608 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.11.3
|
110 |
+
- Pytorch 1.10.0+cu113
|
111 |
+
- Datasets 1.18.3
|
112 |
+
- Tokenizers 0.10.3
|