YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
paddle paddle版本的RoFormer
需要安装最新的paddlenlp
pip install git+https://github.com/PaddlePaddle/PaddleNLP.git
预训练模型转换
预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整):
- 从huggingface.co获取roformer模型权重
- 设置参数运行convert.py代码
- 例子:
假设我想转换https://huggingface.co./junnyu/roformer_chinese_base 权重
- (1)首先下载 https://huggingface.co./junnyu/roformer_chinese_base/tree/main 中的pytorch_model.bin文件,假设我们存入了
./roformer_chinese_base/pytorch_model.bin
- (2)运行convert.py
python convert.py \ --pytorch_checkpoint_path ./roformer_chinese_base/pytorch_model.bin \ --paddle_dump_path ./roformer_chinese_base/model_state.pdparams
- (3)最终我们得到了转化好的权重
./roformer_chinese_base/model_state.pdparams
- (1)首先下载 https://huggingface.co./junnyu/roformer_chinese_base/tree/main 中的pytorch_model.bin文件,假设我们存入了
预训练MLM测试
test_mlm.py
import paddle
import argparse
from paddlenlp.transformers import RoFormerForPretraining, RoFormerTokenizer
def test_mlm(text, model_name):
model = RoFormerForPretraining.from_pretrained(model_name)
model.eval()
tokenizer = RoFormerTokenizer.from_pretrained(model_name)
tokens = ["[CLS]"]
text_list = text.split("[MASK]")
for i,t in enumerate(text_list):
tokens.extend(tokenizer.tokenize(t))
if i==len(text_list)-1:
tokens.extend(["[SEP]"])
else:
tokens.extend(["[MASK]"])
input_ids_list = tokenizer.convert_tokens_to_ids(tokens)
input_ids = paddle.to_tensor([input_ids_list])
with paddle.no_grad():
pd_outputs = model(input_ids)[0][0]
pd_outputs_sentence = "paddle: "
for i, id in enumerate(input_ids_list):
if id == tokenizer.convert_tokens_to_ids(["[MASK]"])[0]:
tokens = tokenizer.convert_ids_to_tokens(pd_outputs[i].topk(5)[1].tolist())
pd_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
pd_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
)
print(pd_outputs_sentence)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", default="roformer-chinese-base", type=str, help="Pretrained roformer name or path."
)
parser.add_argument(
"--text", default="今天[MASK]很好,我想去公园玩!", type=str, help="MLM text."
)
args = parser.parse_args()
test_mlm(text=args.text, model_name=args.model_name)
输出
python test_mlm.py --model_name roformer-chinese-base --text 今天[MASK]很好,我想去公园玩!
# paddle: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩!
python test_mlm.py --model_name roformer-chinese-base --text 北京是[MASK]的首都!
# paddle: 北京是[中国||谁||中华人民共和国||我们||中华民族]的首都!
python test_mlm.py --model_name roformer-chinese-char-base --text 今天[MASK]很好,我想去公园玩!
# paddle: 今天[天||气||都||风||人]很好,我想去公园玩!
python test_mlm.py --model_name roformer-chinese-char-base --text 北京是[MASK]的首都!
# paddle: 北京是[谁||我||你||他||国]的首都!