onnx-checkpoint
#19
by
jupyterjazz
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- .gitattributes +4 -0
- README.md +48 -55
- custom_st.py +6 -6
- model.safetensors +3 -0
- modules.json +1 -1
- onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_6_attr__value +3 -0
- onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_attr__value +3 -0
- onnx/model.onnx +3 -0
- onnx/roberta.embeddings.token_type_embeddings.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.embeddings.word_embeddings.parametrizations.weight.0.lora_A +3 -0
- onnx/roberta.embeddings.word_embeddings.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.embeddings.word_embeddings.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.0.mixer.Wqkv.bias +0 -0
- onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.0.mlp.fc1.bias +0 -0
- onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.1.mixer.Wqkv.bias +0 -0
- onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.1.mlp.fc1.bias +0 -0
- onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.10.mixer.Wqkv.bias +0 -0
- onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.0.lora_B +0 -0
- onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.original +3 -0
- onnx/roberta.encoder.layers.10.mlp.fc1.bias +0 -0
- onnx/roberta.encoder.layers.10.mlp.fc1.parametrizations.weight.0.lora_A +0 -0
- onnx/roberta.encoder.layers.10.mlp.fc1.parametrizations.weight.0.lora_B +0 -0
.gitattributes
CHANGED
@@ -34,3 +34,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.original filter=lfs diff=lfs merge=lfs -text
|
38 |
+
onnx/roberta.embeddings.word_embeddings.parametrizations.weight.0.lora_A filter=lfs diff=lfs merge=lfs -text
|
39 |
+
onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_6_attr__value filter=lfs diff=lfs merge=lfs -text
|
40 |
+
onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_attr__value filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -21528,7 +21528,7 @@ model-index:
|
|
21528 |
</p>
|
21529 |
|
21530 |
<p align="center">
|
21531 |
-
<b>
|
21532 |
</p>
|
21533 |
|
21534 |
## Quick Start
|
@@ -21541,12 +21541,12 @@ The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding
|
|
21541 |
|
21542 |
`jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
|
21543 |
Based on the [Jina-XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation),
|
21544 |
-
this model supports
|
21545 |
-
Additionally, it features 5
|
21546 |
|
21547 |
### Key Features:
|
21548 |
- **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
|
21549 |
-
- **Task-Specific Embedding:** Customize embeddings through the `
|
21550 |
- `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
|
21551 |
- `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
|
21552 |
- `separation`: Used for embeddings in clustering and re-ranking applications
|
@@ -21560,11 +21560,6 @@ While the foundation model supports 89 languages, we've focused our tuning effor
|
|
21560 |
Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian,
|
21561 |
Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu,** and **Vietnamese.**
|
21562 |
|
21563 |
-
|
21564 |
-
## Data & Parameters
|
21565 |
-
|
21566 |
-
The data and training details are described in the technical report (coming soon).
|
21567 |
-
|
21568 |
## Usage
|
21569 |
|
21570 |
**<details><summary>Apply mean pooling when integrating the model.</summary>**
|
@@ -21605,7 +21600,7 @@ model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code
|
|
21605 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
21606 |
|
21607 |
with torch.no_grad():
|
21608 |
-
model_output = model(**encoded_input,
|
21609 |
|
21610 |
embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
|
21611 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
@@ -21643,10 +21638,10 @@ texts = [
|
|
21643 |
"Folge dem weißen Kaninchen.", # German
|
21644 |
]
|
21645 |
|
21646 |
-
# When calling the `encode` function, you can choose a `
|
21647 |
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
|
21648 |
-
# Alternatively, you can choose not to pass a `
|
21649 |
-
embeddings = model.encode(texts,
|
21650 |
|
21651 |
# Compute similarities
|
21652 |
print(embeddings[0] @ embeddings[1].T)
|
@@ -21680,61 +21675,50 @@ from sentence_transformers import SentenceTransformer
|
|
21680 |
|
21681 |
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
|
21682 |
|
21683 |
-
|
21684 |
embeddings = model.encode(
|
21685 |
["What is the weather like in Berlin today?"],
|
21686 |
-
|
21687 |
-
prompt_name=
|
21688 |
)
|
21689 |
```
|
21690 |
|
|
|
|
|
21691 |
|
|
|
|
|
|
|
|
|
|
|
21692 |
|
21693 |
-
|
21694 |
-
|
21695 |
-
|
21696 |
-
| Model | Dimension | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|
21697 |
-
|:------------------------------:|:-----------:|:---------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
21698 |
-
| jina-embeddings-v3 | 1024 | **65.60** | **82.58**| 45.27| 84.01| 58.13| 53.87| **85.8** | 30.98|
|
21699 |
-
| jina-embeddings-v2-en | 768 | 58.12 | 68.82 | 40.08| 84.44| 55.09| 45.64| 80.00| 30.56|
|
21700 |
-
| text-embedding-3-large | 3072 | 62.03 | 75.45 | 49.01| 84.22| 59.16| 55.44| 81.04| 29.92|
|
21701 |
-
| multilingual-e5-large-instruct | 1024 | 64.41 | 77.56 | 47.1 | 86.19| 58.58| 52.47| 84.78| 30.39|
|
21702 |
-
| Cohere-embed-multilingual-v3.0 | 1024 | 60.08 | 64.01 | 46.6 | 86.15| 57.86| 53.84| 83.15| 30.99|
|
21703 |
-
|
21704 |
-
### Multilingual MTEB
|
21705 |
-
|
21706 |
-
| Model | Dimension | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|
21707 |
-
|:------------------------------:|:---------:|:---------:|:--------------:|:----------:|:-------------------:|:---------:|:---------:|:---------:|:-------------:|
|
21708 |
-
| jina-embeddings-v3 | 1024 | **64.44** | **71.46** | 46.71 | 76.91 | 63.98 | 57.98 | **69.83** | - |
|
21709 |
-
| multilingual-e5-large | 1024 | 59.58 | 65.22 | 42.12 | 76.95 | 63.4 | 52.37 | 64.65 | - |
|
21710 |
-
| multilingual-e5-large-instruct | 1024 | 64.25 | 67.45 | **52.12** | 77.79 | **69.02** | **58.38** | 68.77 | - |
|
21711 |
-
|
21712 |
-
|
21713 |
-
### Long Context Tasks (LongEmbed)
|
21714 |
|
21715 |
-
|
21716 |
-
|
21717 |
-
| jina-embeddings-v3* | 1024 | **70.39** | 33.32 | **84.00** | **100.00** | **39.75** | 92.78 | 72.46 |
|
21718 |
-
| jina-embeddings-v2 | 768 | 58.12 | 37.89 | 54.25 | 50.25 | 38.87 | 93.48 | 73.99 |
|
21719 |
-
| text-embedding-3-large | 3072 | 51.30 | 44.09 | 29.25 | 63.00 | 32.49 | 84.80 | 54.16 |
|
21720 |
-
| baai-bge-m3 | 1024 | 56.56 | **45.76** | 40.25 | 46.00 | 35.54 | **94.09** | **77.73** |
|
21721 |
|
21722 |
-
|
|
|
|
|
21723 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21724 |
|
21725 |
-
|
|
|
|
|
21726 |
|
21727 |
-
|
21728 |
-
|
21729 |
-
| 32 | 52.54 | 76.35 |
|
21730 |
-
| 64 | 58.54 | 77.03 |
|
21731 |
-
| 128 | 61.64 | 77.43 |
|
21732 |
-
| 256 | 62.72 | 77.56 |
|
21733 |
-
| 512 | 63.16 | 77.59 |
|
21734 |
-
| 768 | 63.3 | 77.59 |
|
21735 |
-
| 1024 | 63.35 | 77.58 |
|
21736 |
|
21737 |
-
For a comprehensive evaluation and detailed metrics, please refer to the full paper available here (coming soon).
|
21738 |
|
21739 |
## Contact
|
21740 |
|
@@ -21745,5 +21729,14 @@ Join our [Discord community](https://discord.jina.ai) and chat with other commun
|
|
21745 |
If you find `jina-embeddings-v3` useful in your research, please cite the following paper:
|
21746 |
|
21747 |
```bibtex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21748 |
|
21749 |
```
|
|
|
21528 |
</p>
|
21529 |
|
21530 |
<p align="center">
|
21531 |
+
<b>jina-embeddings-v3: Multilingual Embeddings With Task LoRA</b>
|
21532 |
</p>
|
21533 |
|
21534 |
## Quick Start
|
|
|
21541 |
|
21542 |
`jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
|
21543 |
Based on the [Jina-XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation),
|
21544 |
+
this model supports Rotary Position Embeddings to handle long input sequences up to **8192 tokens**.
|
21545 |
+
Additionally, it features 5 LoRA adapters to generate task-specific embeddings efficiently.
|
21546 |
|
21547 |
### Key Features:
|
21548 |
- **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
|
21549 |
+
- **Task-Specific Embedding:** Customize embeddings through the `task` argument with the following options:
|
21550 |
- `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
|
21551 |
- `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
|
21552 |
- `separation`: Used for embeddings in clustering and re-ranking applications
|
|
|
21560 |
Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian,
|
21561 |
Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu,** and **Vietnamese.**
|
21562 |
|
|
|
|
|
|
|
|
|
|
|
21563 |
## Usage
|
21564 |
|
21565 |
**<details><summary>Apply mean pooling when integrating the model.</summary>**
|
|
|
21600 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
21601 |
|
21602 |
with torch.no_grad():
|
21603 |
+
model_output = model(**encoded_input, task='retrieval.query')
|
21604 |
|
21605 |
embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
|
21606 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
|
21638 |
"Folge dem weißen Kaninchen.", # German
|
21639 |
]
|
21640 |
|
21641 |
+
# When calling the `encode` function, you can choose a `task` based on the use case:
|
21642 |
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
|
21643 |
+
# Alternatively, you can choose not to pass a `task`, and no specific LoRA adapter will be used.
|
21644 |
+
embeddings = model.encode(texts, task="text-matching")
|
21645 |
|
21646 |
# Compute similarities
|
21647 |
print(embeddings[0] @ embeddings[1].T)
|
|
|
21675 |
|
21676 |
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
|
21677 |
|
21678 |
+
task = "retrieval.query"
|
21679 |
embeddings = model.encode(
|
21680 |
["What is the weather like in Berlin today?"],
|
21681 |
+
task=task,
|
21682 |
+
prompt_name=task,
|
21683 |
)
|
21684 |
```
|
21685 |
|
21686 |
+
**<details><summary>ONNX Inference.</summary>**
|
21687 |
+
<p>
|
21688 |
|
21689 |
+
You can use ONNX for efficient inference with `jina-embeddings-v3`:
|
21690 |
+
```python
|
21691 |
+
import onnxruntime
|
21692 |
+
import numpy as np
|
21693 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
21694 |
|
21695 |
+
# Load tokenizer and model config
|
21696 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v3')
|
21697 |
+
config = PretrainedConfig.from_pretrained('jinaai/jina-embeddings-v3')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21698 |
|
21699 |
+
# Tokenize input
|
21700 |
+
input_text = tokenizer('sample text', return_tensors='np')
|
|
|
|
|
|
|
|
|
21701 |
|
21702 |
+
# ONNX session
|
21703 |
+
model_path = 'jina-embeddings-v3/onnx/model.onnx'
|
21704 |
+
session = onnxruntime.InferenceSession(model_path)
|
21705 |
|
21706 |
+
# Prepare inputs for ONNX model
|
21707 |
+
task_type = 'text-matching'
|
21708 |
+
task_id = np.array(config.lora_adaptations.index(task_type), dtype=np.int64)
|
21709 |
+
inputs = {
|
21710 |
+
'input_ids': input_text['input_ids'],
|
21711 |
+
'attention_mask': input_text['attention_mask'],
|
21712 |
+
'task_id': task_id
|
21713 |
+
}
|
21714 |
|
21715 |
+
# Run model
|
21716 |
+
outputs = session.run(None, inputs)
|
21717 |
+
```
|
21718 |
|
21719 |
+
</p>
|
21720 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21721 |
|
|
|
21722 |
|
21723 |
## Contact
|
21724 |
|
|
|
21729 |
If you find `jina-embeddings-v3` useful in your research, please cite the following paper:
|
21730 |
|
21731 |
```bibtex
|
21732 |
+
@misc{sturua2024jinaembeddingsv3multilingualembeddingstask,
|
21733 |
+
title={jina-embeddings-v3: Multilingual Embeddings With Task LoRA},
|
21734 |
+
author={Saba Sturua and Isabelle Mohr and Mohammad Kalim Akram and Michael Günther and Bo Wang and Markus Krimmel and Feng Wang and Georgios Mastrapas and Andreas Koukounas and Andreas Koukounas and Nan Wang and Han Xiao},
|
21735 |
+
year={2024},
|
21736 |
+
eprint={2409.10173},
|
21737 |
+
archivePrefix={arXiv},
|
21738 |
+
primaryClass={cs.CL},
|
21739 |
+
url={https://arxiv.org/abs/2409.10173},
|
21740 |
+
}
|
21741 |
|
21742 |
```
|
custom_st.py
CHANGED
@@ -91,19 +91,19 @@ class Transformer(nn.Module):
|
|
91 |
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
92 |
|
93 |
def forward(
|
94 |
-
self, features: Dict[str, torch.Tensor],
|
95 |
) -> Dict[str, torch.Tensor]:
|
96 |
"""Returns token_embeddings, cls_token"""
|
97 |
-
if
|
98 |
raise ValueError(
|
99 |
-
f"Unsupported task '{
|
100 |
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
101 |
-
f"Alternatively, don't pass the `
|
102 |
)
|
103 |
|
104 |
adapter_mask = None
|
105 |
-
if
|
106 |
-
task_id = self._adaptation_map[
|
107 |
num_examples = features['input_ids'].size(0)
|
108 |
adapter_mask = torch.full(
|
109 |
(num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
|
|
|
91 |
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
92 |
|
93 |
def forward(
|
94 |
+
self, features: Dict[str, torch.Tensor], task: Optional[str] = None
|
95 |
) -> Dict[str, torch.Tensor]:
|
96 |
"""Returns token_embeddings, cls_token"""
|
97 |
+
if task and task not in self._lora_adaptations:
|
98 |
raise ValueError(
|
99 |
+
f"Unsupported task '{task}'. "
|
100 |
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
101 |
+
f"Alternatively, don't pass the `task` argument to disable LoRA."
|
102 |
)
|
103 |
|
104 |
adapter_mask = None
|
105 |
+
if task:
|
106 |
+
task_id = self._adaptation_map[task]
|
107 |
num_examples = features['input_ids'].size(0)
|
108 |
adapter_mask = torch.full(
|
109 |
(num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ca06efd886a065d0081912b04c9e27ef5086a9dd09659cce32aa9c84587f23
|
3 |
+
size 1144685320
|
modules.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"name": "0",
|
5 |
"path": "",
|
6 |
"type": "custom_st.Transformer",
|
7 |
-
"kwargs": ["
|
8 |
},
|
9 |
{
|
10 |
"idx": 1,
|
|
|
4 |
"name": "0",
|
5 |
"path": "",
|
6 |
"type": "custom_st.Transformer",
|
7 |
+
"kwargs": ["task"]
|
8 |
},
|
9 |
{
|
10 |
"idx": 1,
|
onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_6_attr__value
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20472209ecbc9a1cea36feaa7e507db402e879d4fc51ebaf5f3cafefc4a7c4a9
|
3 |
+
size 1048832
|
onnx/_roberta_encoder_layers.0_mixer_rotary_emb_Constant_attr__value
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7249c502306a0d781150401d414af5736ec47bed9f96395e5a3b504159342ab1
|
3 |
+
size 1048832
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8586a2e2981d6ccf9d26104d926b92ca45c8c33a55fd146c62519b59aeaf7d2c
|
3 |
+
size 3113411
|
onnx/roberta.embeddings.token_type_embeddings.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.embeddings.word_embeddings.parametrizations.weight.0.lora_A
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e331476c75a983801498b3a97c6e8599359b5002127a6802f94a11f9b67698b3
|
3 |
+
size 20000160
|
onnx/roberta.embeddings.word_embeddings.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.embeddings.word_embeddings.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:827e52a1bff60a42513a0c2ded3bb3db168c973d473ab1a4e3281ec2060b4d98
|
3 |
+
size 1024008192
|
onnx/roberta.encoder.layers.0.mixer.Wqkv.bias
ADDED
Binary file (12.3 kB). View file
|
|
onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.0.lora_B
ADDED
Binary file (246 kB). View file
|
|
onnx/roberta.encoder.layers.0.mixer.Wqkv.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:062b6c3a1067b86638020bcebe33f19e3d0a94d86ca95091fb9f465bf76b5c69
|
3 |
+
size 12582912
|
onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.0.mixer.out_proj.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a17c40b5eba6671395bcad41b488730162eb8f26aea126d2de8f76857053adb5
|
3 |
+
size 4194304
|
onnx/roberta.encoder.layers.0.mlp.fc1.bias
ADDED
Binary file (16.4 kB). View file
|
|
onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.0.lora_B
ADDED
Binary file (328 kB). View file
|
|
onnx/roberta.encoder.layers.0.mlp.fc1.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:841cf3f67fbb99cad22eb25d469b1300e1246dc62ae7e651ef7a50c37386098e
|
3 |
+
size 16777216
|
onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.0.lora_A
ADDED
Binary file (328 kB). View file
|
|
onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.0.mlp.fc2.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a27c74c0d67d8a96ea66a48ca382d4a0a3ebf5354b1ce0bd75a1c8ef2f815ee
|
3 |
+
size 16777216
|
onnx/roberta.encoder.layers.1.mixer.Wqkv.bias
ADDED
Binary file (12.3 kB). View file
|
|
onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.0.lora_B
ADDED
Binary file (246 kB). View file
|
|
onnx/roberta.encoder.layers.1.mixer.Wqkv.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1dbe254f0ec39a45b80c711a392141e8d4ff1d54e1aafb0c917855cf6b46612
|
3 |
+
size 12582912
|
onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.1.mixer.out_proj.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af212a115f6af2f0cd3d6430c71d53ea022cda186ed9097fcda06d243471598
|
3 |
+
size 4194304
|
onnx/roberta.encoder.layers.1.mlp.fc1.bias
ADDED
Binary file (16.4 kB). View file
|
|
onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.0.lora_B
ADDED
Binary file (328 kB). View file
|
|
onnx/roberta.encoder.layers.1.mlp.fc1.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:083cd922bbe4bb93359461a08ca3ab1c80feb9ba08ac9332f07a2f204549fe0f
|
3 |
+
size 16777216
|
onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.0.lora_A
ADDED
Binary file (328 kB). View file
|
|
onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.1.mlp.fc2.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004cdb4408206f4a5c0d9c2e0a829ec0096c5ad98e9bbe93af8c0104af0d9e4a
|
3 |
+
size 16777216
|
onnx/roberta.encoder.layers.10.mixer.Wqkv.bias
ADDED
Binary file (12.3 kB). View file
|
|
onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.0.lora_B
ADDED
Binary file (246 kB). View file
|
|
onnx/roberta.encoder.layers.10.mixer.Wqkv.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0013b2bf24bdd46723a059c3bde4eb7347d9d1f894459ba42050209e6ecc7d
|
3 |
+
size 12582912
|
onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.0.lora_B
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.10.mixer.out_proj.parametrizations.weight.original
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb88e776197f7986730c10af22bbaac3de27496471e5e1a93ba46fe6f3e1d94
|
3 |
+
size 4194304
|
onnx/roberta.encoder.layers.10.mlp.fc1.bias
ADDED
Binary file (16.4 kB). View file
|
|
onnx/roberta.encoder.layers.10.mlp.fc1.parametrizations.weight.0.lora_A
ADDED
Binary file (81.9 kB). View file
|
|
onnx/roberta.encoder.layers.10.mlp.fc1.parametrizations.weight.0.lora_B
ADDED
Binary file (328 kB). View file
|
|