layoutlmv2-base-uncased_finetuned_docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
5.2021 0.2212 50 4.6324
4.5313 0.4425 100 4.1367
4.1524 0.6637 150 3.8836
3.9207 0.8850 200 3.6920
3.5517 1.1062 250 3.8563
3.295 1.3274 300 3.2045
3.0938 1.5487 350 3.1921
2.9264 1.7699 400 2.8674
2.5353 1.9912 450 2.8867
2.1442 2.2124 500 2.7470
1.8984 2.4336 550 2.4924
1.886 2.6549 600 2.6026
1.9277 2.8761 650 2.6891
1.6546 3.0973 700 2.4442
1.4824 3.3186 750 2.8104
1.3533 3.5398 800 2.6744
1.5249 3.7611 850 2.1151
1.3263 3.9823 900 2.5105
0.9831 4.2035 950 2.8372
0.9544 4.4248 1000 2.2467
1.0167 4.6460 1050 3.0175
0.9889 4.8673 1100 2.6414
0.7828 5.0885 1150 2.8631
0.7675 5.3097 1200 2.8171
0.7695 5.5310 1250 3.0892
0.5891 5.7522 1300 3.1601
0.8397 5.9735 1350 3.0463
0.6106 6.1947 1400 3.3519
0.7397 6.4159 1450 3.4455
0.5613 6.6372 1500 3.1579
0.5931 6.8584 1550 3.3272
0.6042 7.0796 1600 3.0458
0.3754 7.3009 1650 3.3260
0.349 7.5221 1700 3.3049
0.5256 7.7434 1750 3.4301
0.4256 7.9646 1800 3.4376
0.333 8.1858 1850 3.4952
0.2256 8.4071 1900 3.7613
0.3261 8.6283 1950 3.3898
0.6199 8.8496 2000 3.3443
0.4307 9.0708 2050 3.1757
0.1569 9.2920 2100 3.7978
0.4755 9.5133 2150 3.5794
0.2493 9.7345 2200 3.5829
0.2686 9.9558 2250 3.5064
0.3662 10.1770 2300 3.2991
0.2353 10.3982 2350 3.4224
0.0991 10.6195 2400 4.2513
0.407 10.8407 2450 3.5800
0.1471 11.0619 2500 3.6337
0.1352 11.2832 2550 3.9379
0.2922 11.5044 2600 3.8454
0.1113 11.7257 2650 4.1881
0.1325 11.9469 2700 4.0861
0.1598 12.1681 2750 4.1164
0.0822 12.3894 2800 4.0703
0.1181 12.6106 2850 3.9423
0.2272 12.8319 2900 4.1349
0.1706 13.0531 2950 4.0460
0.1051 13.2743 3000 4.1329
0.0349 13.4956 3050 4.2074
0.2101 13.7168 3100 4.0685
0.1001 13.9381 3150 4.3431
0.1109 14.1593 3200 4.3210
0.0264 14.3805 3250 4.5687
0.1321 14.6018 3300 4.4580
0.0979 14.8230 3350 4.5390
0.0905 15.0442 3400 4.4641
0.0706 15.2655 3450 4.5589
0.0386 15.4867 3500 4.4396
0.0411 15.7080 3550 4.4250
0.0349 15.9292 3600 4.5973
0.1208 16.1504 3650 4.5193
0.0248 16.3717 3700 4.5689
0.0175 16.5929 3750 4.6381
0.0266 16.8142 3800 4.6431
0.0236 17.0354 3850 4.6552
0.0075 17.2566 3900 4.6977
0.0514 17.4779 3950 4.6455
0.0252 17.6991 4000 4.6360
0.0507 17.9204 4050 4.6566
0.0273 18.1416 4100 4.5838
0.0612 18.3628 4150 4.5459
0.0168 18.5841 4200 4.5979
0.0384 18.8053 4250 4.6035
0.0445 19.0265 4300 4.5904
0.0403 19.2478 4350 4.6543
0.0095 19.4690 4400 4.6552
0.0212 19.6903 4450 4.6426
0.0037 19.9115 4500 4.6448

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
31
Safetensors
Model size
200M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeongho99/layoutlmv2-base-uncased_finetuned_docvqa

Finetuned
(67)
this model