Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: jeiku/MoEv2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: FourOhFour/RP_Phase
    type: chat_template
    chat_template: chatml
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: jeiku/Writing
    type: completion
    field: text

chat_template: chatml

shuffle_merged_datasets: true
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./output/out

hub_model_id: jeiku/Aura-MoEv2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:

wandb_project: Aura-MoEv2
wandb_entity:
wandb_watch:
wandb_name: Aura-MoEv2
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: 
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|finetune_right_pad_id|>

Aura-MoEv2

This model is a fine-tuned version of jeiku/MoEv2 on the FourOhFour/RP_Phase and the jeiku/Writing datasets. It achieves the following results on the evaluation set:

  • Loss: 1.7106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
29.5342 0.0038 1 1.8693
27.8562 0.4990 130 1.7601
26.632 0.9981 260 1.6990
21.9675 1.4952 390 1.7117
21.648 1.9942 520 1.7106

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
7.23B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeiku/Aura-MoEv2

Base model

jeiku/MoEv2
Finetuned
(1)
this model
Quantizations
3 models

Dataset used to train jeiku/Aura-MoEv2