Requirements

pip install -U transformers autoawq

Transformers inference

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
device = "auto"

model_name = "jakiAJK/DeepSeek-R1-Distill-Qwen-1.5B_AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map= device, trust_remote_code= True, torch_dtype= dtype)

model.eval()

chat = [
    { "role": "user", "content": "List any 5 country capitals." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to('cuda')

output = model.generate(**input_tokens, 
                        max_new_tokens=100)

output = tokenizer.batch_decode(output)

print(output)
Downloads last month
7
Safetensors
Model size
642M params
Tensor type
I32
·
BF16
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jakiAJK/DeepSeek-R1-Distill-Qwen-1.5B_AWQ

Quantized
(71)
this model