itlwas
Upload README.md with huggingface_hub
39fab2c verified
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
tags:
- merge
- llama-cpp
- gguf-my-repo
datasets:
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/stheno-filtered-v1.1
- PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
pipeline_tag: text-generation
base_model: Epiculous/Violet_Twilight-v0.2
model-index:
- name: Violet_Twilight-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 45.32
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 23.94
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.72
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.13
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.61
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.45
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
---
# AIronMind/Violet_Twilight-v0.2-Q4_K_M-GGUF
This model was converted to GGUF format from [`Epiculous/Violet_Twilight-v0.2`](https://huggingface.co./Epiculous/Violet_Twilight-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./Epiculous/Violet_Twilight-v0.2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AIronMind/Violet_Twilight-v0.2-Q4_K_M-GGUF --hf-file violet_twilight-v0.2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AIronMind/Violet_Twilight-v0.2-Q4_K_M-GGUF --hf-file violet_twilight-v0.2-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/Violet_Twilight-v0.2-Q4_K_M-GGUF --hf-file violet_twilight-v0.2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AIronMind/Violet_Twilight-v0.2-Q4_K_M-GGUF --hf-file violet_twilight-v0.2-q4_k_m.gguf -c 2048
```