|
--- |
|
language: |
|
- en |
|
- zh |
|
- id |
|
- th |
|
- vi |
|
- ms |
|
- lo |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
- Skywork/SkyPile-150B |
|
- allenai/MADLAD-400 |
|
- cc100 |
|
tags: |
|
- multilingual |
|
- sea |
|
- sailor |
|
- llama-cpp |
|
- gguf-my-repo |
|
license: apache-2.0 |
|
base_model: sail/Sailor-1.8B |
|
inference: false |
|
model-index: |
|
- name: Sailor-1.8B |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD-Thai |
|
type: XQuAD-Thai |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 32.72 |
|
name: EM (3-Shot) |
|
- type: F1 (3-Shot) |
|
value: 48.66 |
|
name: F1 (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: TyDiQA-Indonesian |
|
type: TyDiQA-Indonesian |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 40.88 |
|
name: EM (3-Shot) |
|
- type: F1 (3-Shot) |
|
value: 65.37 |
|
name: F1 (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD-Vietnamese |
|
type: XQuAD-Vietnamese |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 34.22 |
|
name: EM (3-Shot) |
|
- type: F1 (3-Shot) |
|
value: 53.35 |
|
name: F1 (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XCOPA-Thai |
|
type: XCOPA-Thai |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 53.8 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XCOPA-Indonesian |
|
type: XCOPA-Indonesian |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 64.2 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XCOPA-Vietnamese |
|
type: XCOPA-Vietnamese |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 63.2 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: M3Exam-Thai |
|
type: M3Exam-Thai |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 25.38 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: M3Exam-Indonesian |
|
type: M3Exam-Indonesian |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 28.3 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: M3Exam-Vietnamese |
|
type: M3Exam-Vietnamese |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 34.71 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: BELEBELE-Thai |
|
type: BELEBELE-Thai |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 34.22 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: BELEBELE-Indonesian |
|
type: BELEBELE-Indonesian |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 34.89 |
|
name: EM (3-Shot) |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: BELEBELE-Vietnamese |
|
type: BELEBELE-Vietnamese |
|
metrics: |
|
- type: EM (3-Shot) |
|
value: 35.33 |
|
name: EM (3-Shot) |
|
--- |
|
|
|
# AIronMind/Sailor-1.8B-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`sail/Sailor-1.8B`](https://huggingface.co./sail/Sailor-1.8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./sail/Sailor-1.8B) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo AIronMind/Sailor-1.8B-Q4_K_M-GGUF --hf-file sailor-1.8b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo AIronMind/Sailor-1.8B-Q4_K_M-GGUF --hf-file sailor-1.8b-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo AIronMind/Sailor-1.8B-Q4_K_M-GGUF --hf-file sailor-1.8b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo AIronMind/Sailor-1.8B-Q4_K_M-GGUF --hf-file sailor-1.8b-q4_k_m.gguf -c 2048 |
|
``` |
|
|