itlwas's picture
Upload README.md with huggingface_hub
af4d284 verified
---
base_model: ehristoforu/Gistral-16B
datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
- meta-math/MetaMathQA
- emozilla/yarn-train-tokenized-16k-mistral
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- teknium/openhermes
- lksy/ru_instruct_gpt4
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
library_name: transformers
tags:
- mistral
- gistral
- gistral-16b
- multilingual
- code
- 128k
- metamath
- grok-1
- anthropic
- openhermes
- instruct
- merge
- llama-cpp
- gguf-my-repo
language:
- en
- fr
- ru
- de
- ja
- ko
- zh
- it
- uk
- multilingual
- code
pipeline_tag: text-generation
license: apache-2.0
---
# itlwas/Gistral-16B-Q4_K_M-GGUF
This model was converted to GGUF format from [`ehristoforu/Gistral-16B`](https://huggingface.co./ehristoforu/Gistral-16B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./ehristoforu/Gistral-16B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo itlwas/Gistral-16B-Q4_K_M-GGUF --hf-file gistral-16b-q4_k_m.gguf -c 2048
```