|
--- |
|
license: apache-2.0 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
- llama-cpp |
|
- gguf-my-repo |
|
base_model: Weyaxi/Einstein-v3-7B |
|
model-index: |
|
- name: Einstein-v3-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 62.29 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 83.01 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.32 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 51.18 |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 79.95 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 44.81 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=PulsarAI/Einstein-v3-7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# AIronMind/Einstein-v3-7B-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`Weyaxi/Einstein-v3-7B`](https://huggingface.co./Weyaxi/Einstein-v3-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./Weyaxi/Einstein-v3-7B) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo AIronMind/Einstein-v3-7B-Q4_K_M-GGUF --hf-file einstein-v3-7b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo AIronMind/Einstein-v3-7B-Q4_K_M-GGUF --hf-file einstein-v3-7b-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo AIronMind/Einstein-v3-7B-Q4_K_M-GGUF --hf-file einstein-v3-7b-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo AIronMind/Einstein-v3-7B-Q4_K_M-GGUF --hf-file einstein-v3-7b-q4_k_m.gguf -c 2048 |
|
``` |
|
|