metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9227969559942649
name: Precision
- type: recall
value: 0.9360107394563151
name: Recall
- type: f1
value: 0.9293568810396535
name: F1
- type: accuracy
value: 0.9833034139831922
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.973914094330502
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJmZTE4OGY4MmNlZGJmMzJmZGYxMjQ5Nzc4MzEzODU2YjQwZWQ1ZDU1N2NmN2M2YjliZTQ3MmZhZjA2OGYwNCIsInZlcnNpb24iOjF9.w_Y03WPSKDkQnyC3FFw4qtffWqg4ZbjJ6zyIEl6dKTCf6rgrjbhJKIb3MsOIw34Ydb-M3TTpV2Ak43bsaXQ-DA
- type: precision
value: 0.9791360147483736
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY2YjUwYTk5NGE1YWJlYjMyM2MyZGU4ZjE2MTM1ZGZiZDg4MTFjMGRkNzI5ODQ0ZTBlMmVkYzkyODIwYjgxMCIsInZlcnNpb24iOjF9.nChULEs9H0UFNtlM4m_kuBm9Ch981r7V4Axo1yvPIoPAPd6GyCopO615pyjd7bwXxYy4_nQpc1cBI5iY0OkHDA
- type: recall
value: 0.9793269742207723
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmI0MzRkZjY4M2Y5YWE1OTdjNDNlN2NmNDVhMmEwODI2MmM1ZTViNDc1NzllZDdkOWZiZWVkMjQxNGM0YTQyZCIsInZlcnNpb24iOjF9.jS1iBDeJK7_QB7kanNxyfAnZm0HdS_EqBPjBCVhYCPEMRLnuXeuztdz_G4MczcZV6F2RoDjLJzxJdbuzKN1eCw
- type: f1
value: 0.9792314851748437
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQ1MjM1ZDU2YzlmY2JkYTU0MjU5MTIzNDc3MDZmNzJjZmNkNzI1ZDY0MWFmYjBhZjI5NTg3ZjY0NGFlYWZmOSIsInZlcnNpb24iOjF9.BtgL5tCizs8iH7LHOfl1aRfaW0Nxfx6kWldUmWbjDk_McZrK6BRxFnHDscVZ1wUa11rX1IjgC1_DOcMNBXq6BQ
- type: loss
value: 0.10710480064153671
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU0MDY3OTAxZTUyNmNlMjA1MDdiNTg4ZmI4MTJmMDYyMTY4MjZjYzNkODFlMDY1M2RjMjMyNDkzNzBkMmQzNiIsInZlcnNpb24iOjF9.dU5jfYPYWXkiebzZ_c4HTxui6RoYYfAdShcSzXBY0v-pB9FEwm_-8vHOtT-rK_s_EwifpPobRfdpXL2Y7C33CA
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0614
- Precision: 0.9228
- Recall: 0.9360
- F1: 0.9294
- Accuracy: 0.9833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2433 | 1.0 | 878 | 0.0732 | 0.9079 | 0.9190 | 0.9134 | 0.9795 |
0.0553 | 2.0 | 1756 | 0.0599 | 0.9170 | 0.9333 | 0.9251 | 0.9826 |
0.0305 | 3.0 | 2634 | 0.0614 | 0.9228 | 0.9360 | 0.9294 | 0.9833 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6