metadata
language:
- ba
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Bashkir
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: ba
metrics:
- name: Test WER
type: wer
value: 24.2
- name: Test CER
type: cer
value: 5.08
wav2vec2-large-xls-r-300m-bashkir
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set:
- Loss: 0.1892
- Wer: 0.2421
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.4792 | 0.5 | 2000 | 0.4598 | 0.5404 |
1.449 | 1.0 | 4000 | 0.4650 | 0.5610 |
1.3742 | 1.49 | 6000 | 0.4001 | 0.4977 |
1.3375 | 1.99 | 8000 | 0.3916 | 0.4894 |
1.2961 | 2.49 | 10000 | 0.3641 | 0.4569 |
1.2714 | 2.99 | 12000 | 0.3491 | 0.4488 |
1.2399 | 3.48 | 14000 | 0.3151 | 0.3986 |
1.2067 | 3.98 | 16000 | 0.3081 | 0.3923 |
1.1842 | 4.48 | 18000 | 0.2875 | 0.3703 |
1.1644 | 4.98 | 20000 | 0.2840 | 0.3670 |
1.161 | 5.48 | 22000 | 0.2790 | 0.3597 |
1.1303 | 5.97 | 24000 | 0.2552 | 0.3272 |
1.0874 | 6.47 | 26000 | 0.2405 | 0.3142 |
1.0613 | 6.97 | 28000 | 0.2352 | 0.3055 |
1.0498 | 7.47 | 30000 | 0.2249 | 0.2910 |
1.021 | 7.96 | 32000 | 0.2118 | 0.2752 |
1.0002 | 8.46 | 34000 | 0.2046 | 0.2662 |
0.9762 | 8.96 | 36000 | 0.1969 | 0.2530 |
0.9568 | 9.46 | 38000 | 0.1917 | 0.2449 |
0.953 | 9.96 | 40000 | 0.1893 | 0.2425 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0