File size: 8,685 Bytes
6ef781f d8dfbfa 6ef781f e5491d8 15cf419 6ef781f d41ca0b 61b2a3f 6ef781f 228f068 6ef781f f414631 6ef781f ee19064 6ef781f ae8ad17 e5491d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
license: cc-by-nc-4.0
tags:
- moe
- merge
- mergekit
model-index:
- name: TinyUltra-4x1.1B-Base-Alpha
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.9
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 61.42
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.42
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.59
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.75
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 2.58
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha
name: Open LLM Leaderboard
widget:
- example_title: Pirate!
messages:
- role: system
content: You are a pirate chatbot who always responds with Arr!
- role: user
content: "There's a llama on my lawn, how can I get rid of him?"
output:
text: >-
Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare
sight, but I've got a plan that might help ye get rid of 'im. Ye'll need
to gather some carrots and hay, and then lure the llama away with the
promise of a tasty treat. Once he's gone, ye can clean up yer lawn and
enjoy the peace and quiet once again. But beware, me hearty, for there
may be more llamas where that one came from! Arr!
---
![image/jpeg](https://i.imgur.com/rx3ckCc.jpeg)
# TinyUltra-4x1.1B-Base-Alpha
TinyUltra-4x1.1B-Base-Alpha is a Mixure of Experts (MoE) made with the following models using MergeKit:
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0)
* [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co./vihangd/DopeyTinyLlama-1.1B-v1)
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co./cognitivecomputations/TinyDolphin-2.8.1-1.1b)
* [Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test](https://huggingface.co./Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test)
# Modelfile/Prompt format
```markdown
SYSTEM You are a TinyUltra, helpful and lovely AI assistant.
TEMPLATE <|system|> {{ .System }}</s> <|user|> {{ .Prompt }}</s> <|assistant|>
PARAMETER stop <|system|>
PARAMETER stop <|user|>
PARAMETER stop <|assistant|>
PARAMETER stop </s>
```
## 🧩 Configuration
```yaml
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
gate_mode: hidden
dtype: float16
experts:
- source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
positive_prompts:
- "Help me debug this code."
- "Rewrite this function in Python."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Assist me with writing a program that"
- source_model: vihangd/DopeyTinyLlama-1.1B-v1
positive_prompts:
- "How do you"
- "Explain the concept of"
- "Give an overview of"
- "Compare and contrast between"
- "Provide information about"
- "Help me understand"
- "Summarize"
- "Make a recommendation on"
- "Answer this question"
- source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
positive_prompts:
- "Write a program to solve this problem"
- "Modify this function to improve its performance"
- "Refactor this code to enhance readability"
- "Create a custom function for this specific use case"
- "Optimize this algorithm to reduce computational complexity"
- "Implement this feature by extending existing codebase"
- "Integrate this API call into the application"
- "Help me troubleshoot and fix this bug"
- "Review and test this code snippet before deployment"
- "Analyze this error log to identify potential issues"
- "Generate a set of unit tests for this module"
- "Evaluate different approaches to solving this problem"
- "Do a web search for"
- "Use the plugin to"
- source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
positive_prompts:
- "add these numbers"
- "whats 2+2"
- "subtraction"
- "division"
- "multiplication"
- "addition"
- "I need help with a math problem"
- "Solve for x"
- "Add these two numbers together: 4 + 3 = 7"
- "Multiply 5 by 6: 5 * 6 = 30"
- "Divide 8 by 2: 8 / 2 = 4"
- "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
- "Calculate the square root of 16: sqrt(16) = 4"
- "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
- "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
- "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
- "Graph the line y = 2x + 3"
- "Approximate pi to three decimal places: 3.142"
- "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
- "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
- "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
- "Solve the system of equations Ax = b: x = [-5, 10]"
- "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/TinyUltra-4x1.1B-Base-Alpha"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
GGUF: https://huggingface.co./indischepartij/TinyUltra-4x1.1B-Base-Alpha-GGUF
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_indischepartij__TinyUltra-4x1.1B-Base-Alpha)
| Metric |Value|
|---------------------------------|----:|
|Avg. |37.94|
|AI2 Reasoning Challenge (25-Shot)|34.90|
|HellaSwag (10-Shot) |61.42|
|MMLU (5-Shot) |25.42|
|TruthfulQA (0-shot) |37.59|
|Winogrande (5-shot) |65.75|
|GSM8k (5-shot) | 2.58|
|