gmonsoon commited on
Commit
6ef781f
·
verified ·
1 Parent(s): 19d7336

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - moe
5
+ - frankenmoe
6
+ - merge
7
+ - mergekit
8
+ - lazymergekit
9
+ - TinyLlama/TinyLlama-1.1B-Chat-v1.0
10
+ - vihangd/DopeyTinyLlama-1.1B-v1
11
+ - cognitivecomputations/TinyDolphin-2.8.1-1.1b
12
+ - Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
13
+ base_model:
14
+ - TinyLlama/TinyLlama-1.1B-Chat-v1.0
15
+ - vihangd/DopeyTinyLlama-1.1B-v1
16
+ - cognitivecomputations/TinyDolphin-2.8.1-1.1b
17
+ - Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
18
+ ---
19
+
20
+ # UltraCompute-7B-Base
21
+
22
+ UltraCompute-7B-Base is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
23
+ * [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
24
+ * [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co/vihangd/DopeyTinyLlama-1.1B-v1)
25
+ * [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b)
26
+ * [Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test](https://huggingface.co/Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test)
27
+
28
+ ## 🧩 Configuration
29
+
30
+ ```yaml
31
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
32
+ gate_mode: hidden
33
+ dtype: float16
34
+ experts:
35
+ - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
36
+ positive_prompts:
37
+ - "Help me debug this code."
38
+ - "Rewrite this function in Python."
39
+ - "Optimize this C# script."
40
+ - "Implement this feature using JavaScript."
41
+ - "Convert this HTML structure into a more efficient design."
42
+ - "Assist me with writing a program that"
43
+ - source_model: vihangd/DopeyTinyLlama-1.1B-v1
44
+ positive_prompts:
45
+ - "How do you"
46
+ - "Explain the concept of"
47
+ - "Give an overview of"
48
+ - "Compare and contrast between"
49
+ - "Provide information about"
50
+ - "Help me understand"
51
+ - "Summarize"
52
+ - "Make a recommendation on"
53
+ - "Answer this question"
54
+ - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
55
+ positive_prompts:
56
+ - "Write a program to solve this problem"
57
+ - "Modify this function to improve its performance"
58
+ - "Refactor this code to enhance readability"
59
+ - "Create a custom function for this specific use case"
60
+ - "Optimize this algorithm to reduce computational complexity"
61
+ - "Implement this feature by extending existing codebase"
62
+ - "Integrate this API call into the application"
63
+ - "Help me troubleshoot and fix this bug"
64
+ - "Review and test this code snippet before deployment"
65
+ - "Analyze this error log to identify potential issues"
66
+ - "Generate a set of unit tests for this module"
67
+ - "Evaluate different approaches to solving this problem"
68
+ - "Do a web search for"
69
+ - "Use the plugin to"
70
+ - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
71
+ positive_prompts:
72
+ - "add these numbers"
73
+ - "whats 2+2"
74
+ - "subtraction"
75
+ - "division"
76
+ - "multiplication"
77
+ - "addition"
78
+ - "I need help with a math problem"
79
+ - "Solve for x"
80
+ - "Add these two numbers together: 4 + 3 = 7"
81
+ - "Multiply 5 by 6: 5 * 6 = 30"
82
+ - "Divide 8 by 2: 8 / 2 = 4"
83
+ - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
84
+ - "Calculate the square root of 16: sqrt(16) = 4"
85
+ - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
86
+ - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
87
+ - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
88
+ - "Graph the line y = 2x + 3"
89
+ - "Approximate pi to three decimal places: 3.142"
90
+ - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
91
+ - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
92
+ - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
93
+ - "Solve the system of equations Ax = b: x = [-5, 10]"
94
+ - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"
95
+ ```
96
+
97
+ ## 💻 Usage
98
+
99
+ ```python
100
+ !pip install -qU transformers bitsandbytes accelerate
101
+
102
+ from transformers import AutoTokenizer
103
+ import transformers
104
+ import torch
105
+
106
+ model = "gmonsoon/UltraCompute-7B-Base"
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained(model)
109
+ pipeline = transformers.pipeline(
110
+ "text-generation",
111
+ model=model,
112
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
113
+ )
114
+
115
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
116
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
117
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
118
+ print(outputs[0]["generated_text"])
119
+ ```
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5632,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "mixtral",
16
+ "num_attention_heads": 32,
17
+ "num_experts_per_tok": 2,
18
+ "num_hidden_layers": 22,
19
+ "num_key_value_heads": 4,
20
+ "num_local_experts": 4,
21
+ "output_router_logits": false,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 10000.0,
26
+ "router_aux_loss_coef": 0.001,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.37.2",
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
mergekit_moe_config.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
+ gate_mode: hidden
4
+ dtype: float16
5
+ experts:
6
+ - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
7
+ positive_prompts:
8
+ - "Help me debug this code."
9
+ - "Rewrite this function in Python."
10
+ - "Optimize this C# script."
11
+ - "Implement this feature using JavaScript."
12
+ - "Convert this HTML structure into a more efficient design."
13
+ - "Assist me with writing a program that"
14
+ - source_model: vihangd/DopeyTinyLlama-1.1B-v1
15
+ positive_prompts:
16
+ - "How do you"
17
+ - "Explain the concept of"
18
+ - "Give an overview of"
19
+ - "Compare and contrast between"
20
+ - "Provide information about"
21
+ - "Help me understand"
22
+ - "Summarize"
23
+ - "Make a recommendation on"
24
+ - "Answer this question"
25
+ - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
26
+ positive_prompts:
27
+ - "Write a program to solve this problem"
28
+ - "Modify this function to improve its performance"
29
+ - "Refactor this code to enhance readability"
30
+ - "Create a custom function for this specific use case"
31
+ - "Optimize this algorithm to reduce computational complexity"
32
+ - "Implement this feature by extending existing codebase"
33
+ - "Integrate this API call into the application"
34
+ - "Help me troubleshoot and fix this bug"
35
+ - "Review and test this code snippet before deployment"
36
+ - "Analyze this error log to identify potential issues"
37
+ - "Generate a set of unit tests for this module"
38
+ - "Evaluate different approaches to solving this problem"
39
+ - "Do a web search for"
40
+ - "Use the plugin to"
41
+ - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
42
+ positive_prompts:
43
+ - "add these numbers"
44
+ - "whats 2+2"
45
+ - "subtraction"
46
+ - "division"
47
+ - "multiplication"
48
+ - "addition"
49
+ - "I need help with a math problem"
50
+ - "Solve for x"
51
+ - "Add these two numbers together: 4 + 3 = 7"
52
+ - "Multiply 5 by 6: 5 * 6 = 30"
53
+ - "Divide 8 by 2: 8 / 2 = 4"
54
+ - "Find the remainder when 9 is divided by 3: 9 % 3 = 0"
55
+ - "Calculate the square root of 16: sqrt(16) = 4"
56
+ - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)"
57
+ - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)"
58
+ - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12"
59
+ - "Graph the line y = 2x + 3"
60
+ - "Approximate pi to three decimal places: 3.142"
61
+ - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)"
62
+ - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3"
63
+ - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2"
64
+ - "Solve the system of equations Ax = b: x = [-5, 10]"
65
+ - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15"
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d38f31ef61bf68f90303925662e940e7aaa1c0fd144c96c7549865c9790d1c1
3
+ size 1992400992
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2045a530438abd30ab4c899bca713086bc48e5e66b28e81f1533826b68e6da8
3
+ size 1983916872
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a3e4dbec96346b449a29529514bda3ba68c6c1988ef0a56d1018a44cd77eca4
3
+ size 1983916872
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9b26580bb02a40ab88a2d3ca7d4a58c4b2225a47db42246d31e4e58c7248e6
3
+ size 807871392
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00004.safetensors", "model.norm.weight": "model-00001-of-00004.safetensors", "lm_head.weight": "model-00001-of-00004.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00004.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors"}}
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "<s>",
37
+ "padding_side": "left",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }