l3.1-8b-ins-magiccoder

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 0.56

Training results

Training Loss Epoch Step Validation Loss
1.4834 0.0130 2 1.3970
1.2584 0.0259 4 1.3753
1.2988 0.0389 6 1.3373
1.3458 0.0518 8 1.3058
1.2461 0.0648 10 1.2893
1.263 0.0777 12 1.2828
1.2758 0.0907 14 1.2782
1.2802 0.1036 16 1.2702
1.137 0.1166 18 1.2617
1.336 0.1296 20 1.2531
1.1811 0.1425 22 1.2466
1.1447 0.1555 24 1.2441
1.177 0.1684 26 1.2426
1.2585 0.1814 28 1.2404
1.1993 0.1943 30 1.2381
1.1566 0.2073 32 1.2370
1.2826 0.2202 34 1.2364
1.1512 0.2332 36 1.2356
1.1779 0.2462 38 1.2352
1.261 0.2591 40 1.2346
1.1998 0.2721 42 1.2341
1.1847 0.2850 44 1.2335
1.1266 0.2980 46 1.2336
1.1699 0.3109 48 1.2336
1.283 0.3239 50 1.2332
1.2469 0.3368 52 1.2331
1.1653 0.3498 54 1.2330
1.2752 0.3628 56 1.2332
1.2077 0.3757 58 1.2331
1.1729 0.3887 60 1.2330
1.2643 0.4016 62 1.2331
1.3324 0.4146 64 1.2331
1.2215 0.4275 66 1.2332
1.2623 0.4405 68 1.2332
1.2845 0.4534 70 1.2331
1.1966 0.4664 72 1.2331
1.2389 0.4794 74 1.2331
1.1957 0.4923 76 1.2331
1.2684 0.5053 78 1.2331
1.3217 0.5182 80 1.2331
1.3126 0.5312 82 1.2331
1.2146 0.5441 84 1.2330
1.216 0.5571 86 1.2331

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for imdatta0/l3.1-8b-ins-magiccoder

Adapter
(500)
this model