metadata
library_name: transformers
language:
- ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- Bingsu/zeroth-korean
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper large v3 turbo Korean - imTak
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zeroth-Korean
type: Bingsu/zeroth-korean
args: 'config: ko, split: test'
metrics:
- name: Wer
type: wer
value: 5.270290618882698
Whisper large v3 turbo Korean - imTak
This model is a fine-tuned version of imTak/whisper_large_v3_ko_ft on the Zeroth-Korean dataset. It achieves the following results on the evaluation set:
- Loss: 0.0670
- Wer: 5.2703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1068 | 0.7184 | 1000 | 0.1216 | 8.6132 |
0.0388 | 1.4368 | 2000 | 0.0905 | 5.3606 |
0.0089 | 2.1552 | 3000 | 0.0707 | 4.7282 |
0.0082 | 2.8736 | 4000 | 0.0670 | 5.2703 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3