language:
- en
license: apache-2.0
library_name: transformers
datasets:
- Open-Orca/SlimOrca
- ise-uiuc/Magicoder-OSS-Instruct-75K
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
pipeline_tag: text-generation
arxiv: 2401.02731
model-index:
- name: Camelidae-8x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.63
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.18
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.1
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.86
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.24
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 22.82
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=hywu/Camelidae-8x7B
name: Open LLM Leaderboard
Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
News
- 1/10/2024 - Camelidae models are now available on 🤗HuggingFace.
- 1/4/2024 - We released the paper, Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks.
- 12/22/2023 - We released the training repo that craft the dense model with LLaMA architecture to the MoE model.
Introduction
Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques
Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way.
Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including QLoRA and Adapter to perfrom Efficient Sparse Upcycling.
Model Lists
Model | Download |
---|---|
Camelidae-8x7B | 🤗HuggingFace |
Camelidae-8x13B | 🤗HuggingFace |
Camelidae-8x34B | 🤗HuggingFace |
Performance
Model | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | TriviaQA (0shot) |
---|---|---|---|---|---|---|---|
GPT3.5 | 70.0% | 57.1% | 34.1% | 48.1% | - | 85.5% | - |
Camelidae-8x34B | 75.6% | 78.3% | 22.6% | 43.9% | 41.4% | 85.3% | 63.4% |
SUSChat-34B | 76.4% | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | 56.1% |
Mixtral-8x7B-instruct | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | 86.5% | 57.7% |
LLaMA2-70B-chat | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | 63.0% |
Camelidae-8x13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | 59.4% |
LLaMA2-13B-chat | 53.9% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | 55.0% |
Camelidae-8x7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | 51.0% |
LLaMA2-7B-chat | 47.2% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | 46.4% |
We bold the highest scores for open-source models and all models separately.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval()
# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval()
model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval()
inputs = tokenizer('### Human:\nHow are you?\n### Assistant:\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
# I am doing well, thank you.
Citation
@article{wu2024parameter,
title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks},
author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei},
journal={arXiv preprint arXiv:2401.02731},
year={2024}
}
License
The source code in this repo is licensed under the Apache 2.0 License. Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from facebookresearch and 01-ai.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 54.47 |
AI2 Reasoning Challenge (25-Shot) | 55.63 |
HellaSwag (10-Shot) | 79.18 |
MMLU (5-Shot) | 50.10 |
TruthfulQA (0-shot) | 42.86 |
Winogrande (5-shot) | 76.24 |
GSM8k (5-shot) | 22.82 |