MCG-NJUvideomae-base-finetuned-kinetics-face

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7299
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5489 3.0017 100 1.5109 0.6111
0.6115 6.0033 200 0.5476 1.0
0.042 9.005 300 0.0697 1.0
0.0243 13.0017 400 0.1967 0.9167
1.1668 16.0033 500 0.9849 0.8333
0.1354 19.005 600 0.7017 0.8333
0.8714 23.0017 700 0.0027 1.0
0.0009 26.0033 800 0.2290 0.9444
0.0003 29.005 900 0.1073 0.9722
1.0037 33.0017 1000 1.3122 0.75
0.4275 36.0033 1100 0.0041 1.0
0.0005 39.005 1200 0.3496 0.9444
0.0005 43.0017 1300 0.1043 0.9722
0.0239 46.0033 1400 1.4939 0.8333
0.0174 49.005 1500 0.0428 0.9722
0.001 53.0017 1600 0.6678 0.8889
0.0865 56.0033 1700 0.3907 0.9444
0.9919 59.005 1800 0.0019 1.0
0.0007 63.0017 1900 0.7224 0.8889
0.0002 66.0033 2000 0.0023 1.0
0.0002 69.005 2100 0.2816 0.9444
0.7678 73.0017 2200 1.0904 0.8056
0.0013 76.0033 2300 1.0187 0.8611
0.0004 79.005 2400 0.2458 0.9722
0.0094 83.0017 2500 0.9661 0.8333
0.0003 86.0033 2600 0.2274 0.9722
0.0011 89.005 2700 0.2844 0.9444
0.0001 93.0017 2800 0.8405 0.8611
0.0001 96.0033 2900 0.5875 0.9167
0.0001 99.005 3000 1.8345 0.7778
0.0001 103.0017 3100 0.5098 0.9167
0.0003 106.0033 3200 0.0062 1.0
0.3248 109.005 3300 0.4113 0.9444
0.0001 113.0017 3400 0.1064 0.9722
0.0001 116.0033 3500 0.0006 1.0
0.0003 119.005 3600 0.2552 0.9722
0.001 123.0017 3700 0.0202 1.0
0.0002 126.0033 3800 0.3475 0.9444
0.0001 129.005 3900 0.5493 0.9444
0.0001 133.0017 4000 0.5506 0.9444
0.0001 136.0033 4100 0.5711 0.9167
0.0001 139.005 4200 0.5181 0.9444
0.0021 143.0017 4300 0.7568 0.9167
0.9007 146.0033 4400 0.0072 1.0
0.0001 149.005 4500 0.2858 0.9444
0.0001 153.0017 4600 1.0247 0.8889
0.6131 156.0033 4700 0.0814 0.9722
0.0004 159.005 4800 1.8986 0.8056
0.0001 163.0017 4900 1.5607 0.8056
0.0001 166.0033 5000 1.5370 0.8056
0.0001 169.005 5100 1.4807 0.8056
0.0001 173.0017 5200 1.2996 0.8333
0.0 176.0033 5300 1.2259 0.8056
0.0001 179.005 5400 1.1819 0.8056
0.0 183.0017 5500 1.1047 0.8056
0.0001 186.0033 5600 1.0461 0.8333
0.0 189.005 5700 1.2544 0.8056
0.8628 193.0017 5800 1.1260 0.8056
0.0 196.0033 5900 0.7299 0.9167
0.0 199.005 6000 0.7299 0.9167

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.