Test set performance

  • Top 1 Accuracy: 0.4346
  • Top 3 Accuracy: 0.7677
  • Top 1 Macro F1: 0.2668
  • Top 3 Macro F1: 0.5669

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

device="cuda:0"
model = "heegyu/TinyLlama-augesc-context-strategy"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForSequenceClassification.from_pretrained(model).eval().to(device)

example = """usr: Hi
sys[Question]: Hello, how are you today?
usr: I was scolded by my parents yesterday"""

inputs = tokenizer(example, return_tensors="pt").to(device)
logits = model(**inputs).logits.softmax(-1)
print(logits)

label = logits.argmax(-1).item()


ESCONV_STRATEGY = [
    "Question",
    "Restatement or Paraphrasing",
    "Reflection of feelings",
    "Self-disclosure",
    "Affirmation and Reassurance",
    "Providing Suggestions",
    "Information",
    "Others"
]
id2label = {i:k for i, k in enumerate(ESCONV_STRATEGY)}

print(id2label[label])
Downloads last month
17
Safetensors
Model size
1.1B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train heegyu/TinyLlama-augesc-context-strategy