metadata
language:
- id
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Breeze DSW Indonesian - tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_0 id
type: mozilla-foundation/common_voice_16_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 43.44465912227436
Breeze DSW Indonesian - tiny
This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_16_0 id dataset. It achieves the following results on the evaluation set:
- Loss: 0.7090
- Wer: 43.4447
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.99 | 0.1 | 100 | 0.8486 | 54.2460 |
0.7896 | 1.04 | 200 | 0.7578 | 48.3899 |
0.4164 | 1.14 | 300 | 0.7388 | 49.3284 |
0.5456 | 2.09 | 400 | 0.7178 | 45.7954 |
0.4761 | 3.03 | 500 | 0.7109 | 45.2158 |
0.2674 | 3.13 | 600 | 0.7007 | 44.8431 |
0.3628 | 4.08 | 700 | 0.7026 | 44.2497 |
0.2565 | 5.02 | 800 | 0.7085 | 44.5073 |
0.2147 | 5.12 | 900 | 0.7090 | 43.4447 |
0.28 | 6.06 | 1000 | 0.7134 | 43.9553 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0