fotocopy-ori

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4776
  • Accuracy: 0.9492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.6343 0.4915
No log 1.8462 6 0.2235 0.9322
No log 2.7692 9 0.1887 0.9492
No log 4.0 13 0.0278 0.9831
0.4375 4.9231 16 1.6119 0.8475
0.4375 5.8462 19 0.5158 0.8983
0.4375 6.7692 22 0.0602 0.9661
0.4375 8.0 26 0.3831 0.9492
0.4375 8.9231 29 0.4555 0.9492
0.1245 9.8462 32 0.9890 0.9153
0.1245 10.7692 35 0.4632 0.9322
0.1245 12.0 39 0.5992 0.9322
0.1245 12.9231 42 0.6255 0.9322
0.048 13.8462 45 0.5156 0.9492
0.048 14.7692 48 0.6033 0.9492
0.048 16.0 52 0.5978 0.9492
0.048 16.9231 55 0.5747 0.9492
0.048 17.8462 58 0.5635 0.9492
0.0005 18.7692 61 0.5314 0.9492
0.0005 20.0 65 0.5023 0.9492
0.0005 20.9231 68 0.4886 0.9492
0.0005 21.8462 71 0.4809 0.9492
0.0005 22.7692 74 0.4779 0.9492
0.0 23.0769 75 0.4776 0.9492

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/fotocopy-ori

Finetuned
(55)
this model

Evaluation results