Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
TinyLlama/TinyLlama-1.1B-Chat-v1.0
h4rz3rk4s3/TinyNewsLlama-1.1B
h4rz3rk4s3/TinyParlaMintLlama-1.1B
Tensoic/TinyLlama-1.1B-3T-openhermes
conversational
text-generation-inference
Inference Endpoints
TinyPoliticaLlama-4x1.1B-nf4
TinyPoliticaLlama-4x1.1B-nf4 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- h4rz3rk4s3/TinyNewsLlama-1.1B
- h4rz3rk4s3/TinyParlaMintLlama-1.1B
- Tensoic/TinyLlama-1.1B-3T-openhermes
🧩 Configuration
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
dtype: bfloat16
gate_mode: hidden
experts:
- source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
positive_prompts: ["chat", "assistant", "tell me", "explain"]
- source_model: h4rz3rk4s3/TinyNewsLlama-1.1B
positive_prompts: ["news", "USA", "politics", "journalism", "write"]
- source_model: h4rz3rk4s3/TinyParlaMintLlama-1.1B
positive_prompts: ["speech", "politics", "EU", "europe", "write"]
- source_model: Tensoic/TinyLlama-1.1B-3T-openhermes
positive_prompts: ["reason", "provide", "instruct", "summarize", "count"]```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "h4rz3rk4s3/TinyPoliticaLlama-4x1.1B-nf4"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.