gokuls's picture
End of training
df7c047
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_0.5
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: hbertv1-emotion-logit_KD-tiny_ffn_0.5
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8945

hbertv1-emotion-logit_KD-tiny_ffn_0.5

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_0.5 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5131
  • Accuracy: 0.8945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1241 1.0 250 2.5267 0.5775
2.0224 2.0 500 1.4869 0.748
1.2988 3.0 750 0.9838 0.836
0.9355 4.0 1000 0.7613 0.8535
0.7507 5.0 1250 0.6392 0.8805
0.6071 6.0 1500 0.5669 0.888
0.5377 7.0 1750 0.5131 0.8945
0.4707 8.0 2000 0.5133 0.8935
0.4223 9.0 2250 0.5078 0.8905
0.3933 10.0 2500 0.5156 0.8855
0.3612 11.0 2750 0.4883 0.894
0.3409 12.0 3000 0.4883 0.894

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0