Edit model card

hbertv1-emotion-logit_KD-small

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_small_freeze_new on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2473
  • Accuracy: 0.9335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4023 1.0 250 0.5204 0.8825
0.3903 2.0 500 0.3014 0.91
0.2438 3.0 750 0.2849 0.9185
0.1778 4.0 1000 0.2489 0.9265
0.1394 5.0 1250 0.2878 0.9205
0.1218 6.0 1500 0.2887 0.923
0.1083 7.0 1750 0.2788 0.9285
0.1019 8.0 2000 0.2373 0.928
0.0898 9.0 2250 0.2473 0.9335
0.0817 10.0 2500 0.2822 0.926
0.0827 11.0 2750 0.2474 0.926
0.0733 12.0 3000 0.2329 0.9285
0.0631 13.0 3250 0.2301 0.929
0.06 14.0 3500 0.2565 0.9295

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
30.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/hbertv1-emotion-logit_KD-small

Dataset used to train gokuls/hbertv1-emotion-logit_KD-small

Evaluation results