hBERTv2_data_aug_mrpc

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6240
  • Accuracy: 0.6838
  • F1: 0.8122
  • Combined Score: 0.7480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6319 1.0 980 0.6245 0.6838 0.8122 0.7480
0.6305 2.0 1960 0.6240 0.6838 0.8122 0.7480
0.6303 3.0 2940 0.6259 0.6838 0.8122 0.7480
0.6302 4.0 3920 0.6252 0.6838 0.8122 0.7480
0.6302 5.0 4900 0.6241 0.6838 0.8122 0.7480
0.6302 6.0 5880 0.6241 0.6838 0.8122 0.7480
0.6301 7.0 6860 0.6242 0.6838 0.8122 0.7480

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train gokuls/hBERTv2_data_aug_mrpc

Evaluation results