hBERTv2_data_aug_mrpc
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.6240
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6319 | 1.0 | 980 | 0.6245 | 0.6838 | 0.8122 | 0.7480 |
0.6305 | 2.0 | 1960 | 0.6240 | 0.6838 | 0.8122 | 0.7480 |
0.6303 | 3.0 | 2940 | 0.6259 | 0.6838 | 0.8122 | 0.7480 |
0.6302 | 4.0 | 3920 | 0.6252 | 0.6838 | 0.8122 | 0.7480 |
0.6302 | 5.0 | 4900 | 0.6241 | 0.6838 | 0.8122 | 0.7480 |
0.6302 | 6.0 | 5880 | 0.6241 | 0.6838 | 0.8122 | 0.7480 |
0.6301 | 7.0 | 6860 | 0.6242 | 0.6838 | 0.8122 | 0.7480 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train gokuls/hBERTv2_data_aug_mrpc
Evaluation results
- Accuracy on GLUE MRPCself-reported0.684
- F1 on GLUE MRPCself-reported0.812