gokuls's picture
End of training
f9b9b44
metadata
license: apache-2.0
base_model: google/bert_uncased_L-2_H-128_A-2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-2_H-128_A-2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6733890801770782

bert_uncased_L-2_H-128_A-2_massive

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6807
  • Accuracy: 0.6734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8812 1.0 180 3.6329 0.2086
3.4819 2.0 360 3.2331 0.3074
3.1331 3.0 540 2.9025 0.3847
2.8406 4.0 720 2.6372 0.4624
2.6013 5.0 900 2.4211 0.5194
2.4097 6.0 1080 2.2485 0.5539
2.2504 7.0 1260 2.1084 0.5898
2.1234 8.0 1440 1.9968 0.6085
2.0195 9.0 1620 1.9036 0.6316
1.9345 10.0 1800 1.8336 0.6463
1.8616 11.0 1980 1.7722 0.6596
1.8091 12.0 2160 1.7281 0.6645
1.7704 13.0 2340 1.6984 0.6685
1.7431 14.0 2520 1.6807 0.6734
1.7293 15.0 2700 1.6749 0.6729

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1