Overview
Fine-tuned Llama-3 8B with an uncensored/unfiltered Wizard-Vicuna conversation dataset. Used QLoRA for fine-tuning.
The model here includes the fp32 HuggingFace version, plus a quantized 4-bit q4_0 gguf version.
Prompt style
The model was trained with the following prompt style:
### HUMAN:
Hello
### RESPONSE:
Hi, how are you?
### HUMAN:
I'm fine.
### RESPONSE:
How can I help you?
...
Training code
Code used to train the model is available here.
To reproduce the results:
git clone https://github.com/georgesung/llm_qlora
cd llm_qlora
pip install -r requirements.txt
python train.py configs/llama3_8b_chat_uncensored.yaml
Fine-tuning guide
https://georgesung.github.io/ai/qlora-ift/
Ollama inference
First, install Ollama. Based on instructions here, run the following:
cd $MODEL_DIR_OF_CHOICE
wget https://huggingface.co./georgesung/llama3_8b_chat_uncensored/resolve/main/llama3_8b_chat_uncensored_q4_0.gguf
Create a file called llama3-uncensored.modelfile
with the following:
FROM ./llama3_8b_chat_uncensored_q4_0.gguf
TEMPLATE """{{ .System }}
### HUMAN:
{{ .Prompt }}
### RESPONSE:
"""
PARAMETER stop "### HUMAN:"
PARAMETER stop "### RESPONSE:"
Then run:
ollama create llama3-uncensored -f llama3-uncensored.modelfile
ollama run llama3-uncensored
- Downloads last month
- 10,691
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.