SetFit with BAAI/bge-small-en-v1.5 on Health Information Needs

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: BAAI/bge-small-en-v1.5
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 2 classes
  • Language: en
  • License: apache-2.0

Model Sources

Model Labels

Label Examples
1
  • 'Where would you put refuse if you do not want it to exist any more?'
  • 'Which is an example of the absolutism under peter the great?'
  • 'where does the water at niagra falls come from'
0
  • 'the nerves,blood vessels, and glands are located in which layer of the skin'
  • 'Of what discipline is affective computing a branch?'
  • 'Obesity can cause resistance to which hormone?'

Evaluation

Metrics

Label 0 1 Accuracy Macro Avg Weighted Avg
all {'precision': 0.37465309898242366, 'recall': 0.989413680781759, 'f1-score': 0.5435025721315142, 'support': 1228.0} {'precision': 0.9940962761126249, 'recall': 0.5190894000474271, 'f1-score': 0.6820377005764138, 'support': 4217.0} 0.6252 {'precision': 0.6843746875475243, 'recall': 0.7542515404145931, 'f1-score': 0.6127701363539639, 'support': 5445.0} {'precision': 0.8543944907102582, 'recall': 0.6251606978879706, 'f1-score': 0.6507941491107871, 'support': 5445.0}

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("fuhakiem/hin-v001-trainer")
# Run inference
preds = model("Referees")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 7.3 15
Label Training Sample Count
0 5
1 5

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.5 1 0.1957 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu124
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
11
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fuhakiem/hin-v001-trainer

Finetuned
(134)
this model

Evaluation results