|
# medical-20-0-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo-0_9062874564 |
|
|
|
## Model Description |
|
|
|
medical-20-0-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo-0_9062874564 is a fine-tuned version of jinaai/jina-embeddings-v2-small-en designed for a specific domain. |
|
|
|
## Use Case |
|
This model is designed to support various applications in natural language processing and understanding. |
|
|
|
## Associated Dataset |
|
|
|
This the dataset for this model can be found [**here**](https://huggingface.co./datasets/fine-tuned/medical-20-0-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo-0_9062874564). |
|
|
|
## How to Use |
|
|
|
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
llm_name = "medical-20-0-16-jinaai_jina-embeddings-v2-small-en-100-gpt-3.5-turbo-0_9062874564" |
|
tokenizer = AutoTokenizer.from_pretrained(llm_name) |
|
model = AutoModel.from_pretrained(llm_name) |
|
|
|
tokens = tokenizer("Your text here", return_tensors="pt") |
|
embedding = model(**tokens) |
|
``` |
|
|