miniclaus-qw1.5B-UNAMGS

Trained with Magpie-Align/Magpie-Pro-MT-300K-v0.1

Using MGS & UNA (MLP) on this tiny but powerful model.

miniclaus-qw1.5B-UNAMGS Built with Axolotl

It achieves the following results on the evaluation set:

  • Loss: 0.7193

Quants

Available at:

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • train_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.1641 0.0007 1 0.8514
0.9246 0.0503 76 0.7921
0.8791 0.1006 152 0.7727
0.8507 0.1509 228 0.7611
0.8376 0.2012 304 0.7534
0.793 0.2515 380 0.7467
0.7834 0.3018 456 0.7421
0.7807 0.3521 532 0.7384
0.764 0.4023 608 0.7359
0.7738 0.4526 684 0.7320
0.7425 0.5029 760 0.7300
0.7519 0.5532 836 0.7279
0.7461 0.6035 912 0.7255
0.7489 0.6538 988 0.7245
0.7614 0.7041 1064 0.7222
0.7576 0.7544 1140 0.7222
0.7303 0.8047 1216 0.7209
0.7332 0.8550 1292 0.7199
0.7541 0.9053 1368 0.7202
0.7369 0.9556 1444 0.7193

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.3.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1

Thanks

  • Qwen Team for their outstanding model
  • MagPie Team for contributing plenty of datasets
  • Cybertron Cloud Compute

Citations

@misc{miniclaus-qw15,
  title={MiniClaus: 1.5B UNAMGS}, 
  author={Xavier Murias},
  year={2024},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co./fblgit/miniclaus-qw1.5B-UNAMGS}},
}
@misc{Magpie,
    title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, 
    author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin},
    year={2024},
    eprint={2406.08464},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}
@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
Downloads last month
163
Safetensors
Model size
1.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fblgit/miniclaus-qw1.5B-UNAMGS

Base model

Qwen/Qwen2.5-1.5B
Finetuned
(82)
this model
Quantizations
5 models

Dataset used to train fblgit/miniclaus-qw1.5B-UNAMGS

Collection including fblgit/miniclaus-qw1.5B-UNAMGS