|
--- |
|
language: |
|
- de |
|
- en |
|
tags: |
|
- translation |
|
- wmt19 |
|
- facebook |
|
license: apache-2.0 |
|
datasets: |
|
- wmt19 |
|
metrics: |
|
- bleu |
|
thumbnail: https://huggingface.co./front/thumbnails/facebook.png |
|
--- |
|
|
|
# FSMT |
|
|
|
## Model description |
|
|
|
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for de-en. |
|
|
|
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). |
|
|
|
The abbreviation FSMT stands for FairSeqMachineTranslation |
|
|
|
All four models are available: |
|
|
|
* [wmt19-en-ru](https://huggingface.co./facebook/wmt19-en-ru) |
|
* [wmt19-ru-en](https://huggingface.co./facebook/wmt19-ru-en) |
|
* [wmt19-en-de](https://huggingface.co./facebook/wmt19-en-de) |
|
* [wmt19-de-en](https://huggingface.co./facebook/wmt19-de-en) |
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer |
|
mname = "facebook/wmt19-de-en" |
|
tokenizer = FSMTTokenizer.from_pretrained(mname) |
|
model = FSMTForConditionalGeneration.from_pretrained(mname) |
|
|
|
input = "Maschinelles Lernen ist großartig, oder?" |
|
input_ids = tokenizer.encode(input, return_tensors="pt") |
|
outputs = model.generate(input_ids) |
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(decoded) # Machine learning is great, isn't it? |
|
|
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) |
|
|
|
## Training data |
|
|
|
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). |
|
|
|
## Eval results |
|
|
|
pair | fairseq | transformers |
|
-------|---------|---------- |
|
de-en | [42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750) | 41.35 |
|
|
|
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: |
|
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). |
|
- re-ranking |
|
|
|
The score was calculated using this code: |
|
|
|
```bash |
|
git clone https://github.com/huggingface/transformers |
|
cd transformers |
|
export PAIR=de-en |
|
export DATA_DIR=data/$PAIR |
|
export SAVE_DIR=data/$PAIR |
|
export BS=8 |
|
export NUM_BEAMS=15 |
|
mkdir -p $DATA_DIR |
|
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source |
|
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target |
|
echo $PAIR |
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS |
|
``` |
|
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. |
|
|
|
## Data Sources |
|
|
|
- [training, etc.](http://www.statmt.org/wmt19/) |
|
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{..., |
|
year={2020}, |
|
title={Facebook FAIR's WMT19 News Translation Task Submission}, |
|
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, |
|
booktitle={Proc. of WMT}, |
|
} |
|
``` |
|
|
|
|
|
## TODO |
|
|
|
- port model ensemble (fairseq uses 4 model checkpoints) |
|
|
|
|