Error when testing
#7
by
fnando1995
- opened
I am using this code, this part runs ok
import numpy as np
import matplotlib.pyplot as plt
import gc
from transformers import pipeline
from PIL import Image
import requests
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
del mask
gc.collect()
def show_masks_on_image(raw_image, masks):
plt.imshow(np.array(raw_image))
ax = plt.gca()
ax.set_autoscale_on(False)
for mask in masks:
show_mask(mask, ax=ax, random_color=True)
plt.axis("off")
plt.show()
del mask
gc.collect()
generator = pipeline("mask-generation", model="facebook/sam-vit-base")
img_url = "https://huggingface.co./ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
after I try to generate the outputs with:
outputs = generator(raw_image, points_per_batch=64)
and get this error:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[3], line 1
----> 1 outputs = generator(raw_image, points_per_batch=64)
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/pipelines/mask_generation.py:166, in MaskGenerationPipeline.__call__(self, image, num_workers, batch_size, *args, **kwargs)
128 def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs):
129 """
130 Generates binary segmentation masks
131
(...)
164
165 """
--> 166 return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs)
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/pipelines/base.py:1246, in Pipeline.__call__(self, inputs, num_workers, batch_size, *args, **kwargs)
1244 return self.iterate(inputs, preprocess_params, forward_params, postprocess_params)
1245 elif self.framework == "pt" and isinstance(self, ChunkPipeline):
-> 1246 return next(
1247 iter(
1248 self.get_iterator(
1249 [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params
1250 )
1251 )
1252 )
1253 else:
1254 return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/pipelines/pt_utils.py:125, in PipelineIterator.__next__(self)
123 # We're out of items within a batch
124 item = next(self.iterator)
--> 125 processed = self.infer(item, **self.params)
126 # We now have a batch of "inferred things".
127 if self.loader_batch_size is not None:
128 # Try to infer the size of the batch
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/pipelines/mask_generation.py:271, in MaskGenerationPipeline.postprocess(self, model_outputs, output_rle_mask, output_bboxes_mask, crops_nms_thresh)
269 all_scores = torch.cat(all_scores)
270 all_boxes = torch.cat(all_boxes)
--> 271 output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation(
272 all_masks, all_scores, all_boxes, crops_nms_thresh
273 )
275 extra = defaultdict(list)
276 for output in model_outputs:
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py:761, in SamImageProcessor.post_process_for_mask_generation(self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors)
745 """
746 Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks.
747
(...)
758 If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
759 """
760 if return_tensors == "pt":
--> 761 return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh)
762 elif return_tensors == "tf":
763 return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh)
File /mnt/data/workspaces/TESTING/sam-vit-base/ambiente/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py:1456, in _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh)
1442 def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
1443 """
1444 Perform NMS (Non Maximum Suppression) on the outputs.
1445
(...)
1454 NMS threshold.
1455 """
-> 1456 keep_by_nms = batched_nms(
1457 boxes=mask_boxes.float(),
1458 scores=iou_scores,
1459 idxs=torch.zeros(mask_boxes.shape[0]),
1460 iou_threshold=amg_crops_nms_thresh,
1461 )
1463 iou_scores = iou_scores[keep_by_nms]
1464 rle_masks = [rle_masks[i] for i in keep_by_nms]
NameError: name 'batched_nms' is not defined