See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- 000dac3a8cb81c80_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/000dac3a8cb81c80_train_data.json
type:
field_input: ''
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 600
auto_resume_from_checkpoints: true
micro_batch_size: 1
mlflow_experiment_name: /tmp/000dac3a8cb81c80_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: c30b7643-9ea3-489c-b95b-6fdd775d8f75
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30b7643-9ea3-489c-b95b-6fdd775d8f75
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6802 | 0.0001 | 1 | 0.6829 |
0.6973 | 0.0056 | 50 | 0.5870 |
0.5528 | 0.0112 | 100 | 0.5732 |
0.5774 | 0.0168 | 150 | 0.5664 |
0.507 | 0.0224 | 200 | 0.5608 |
0.5901 | 0.0280 | 250 | 0.5569 |
0.5583 | 0.0336 | 300 | 0.5562 |
0.6019 | 0.0392 | 350 | 0.5567 |
0.5378 | 0.0448 | 400 | 0.5553 |
0.4796 | 0.0504 | 450 | 0.5526 |
0.5788 | 0.0560 | 500 | 0.5517 |
0.5497 | 0.0616 | 550 | 0.5511 |
0.5998 | 0.0672 | 600 | 0.5509 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct