Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
  - 000dac3a8cb81c80_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/000dac3a8cb81c80_train_data.json
  type:
    field_input: ''
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 600
auto_resume_from_checkpoints: true
micro_batch_size: 1
mlflow_experiment_name: /tmp/000dac3a8cb81c80_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: c30b7643-9ea3-489c-b95b-6fdd775d8f75
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30b7643-9ea3-489c-b95b-6fdd775d8f75
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22

This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss
0.6802 0.0001 1 0.6829
0.6973 0.0056 50 0.5870
0.5528 0.0112 100 0.5732
0.5774 0.0168 150 0.5664
0.507 0.0224 200 0.5608
0.5901 0.0280 250 0.5569
0.5583 0.0336 300 0.5562
0.6019 0.0392 350 0.5567
0.5378 0.0448 400 0.5553
0.4796 0.0504 450 0.5526
0.5788 0.0560 500 0.5517
0.5497 0.0616 550 0.5511
0.5998 0.0672 600 0.5509

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for error577/e4d743c3-e9f1-423a-a19a-e0d6ed3f5f22