File size: 2,282 Bytes
c5102ac a9debdc c5102ac a9debdc 3e5a3a3 a9debdc c5102ac f4950d1 c020e09 f4950d1 c5102ac c020e09 c5102ac f4950d1 c5102ac f4950d1 c5102ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
datasets:
- erfanzar/UltraChat-Mixin
language:
- en
- fr
- es
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code
---
# LinguaMatic
LinguaMatic is an advanced AI model designed to handle a wide range of Natural Language Processing (NLP) tasks. With its powerful capabilities, LinguaMatic can assist with tasks such as text classification, sentiment analysis, language translation, question answering, and much more.
## Last Update
* Nov 19 - Now AI works better with system prompting and you can achive better result with giving model better system prompts
* Nov 20 - Fixing Questioning responses
## EasyDel
The model is finetuned Using a custom version of UltraChat on TPU-v4 POD using [EasyDel](https://github.com/erfanzar/EasyDeL)
## Prompting Method
LinguaMatic utilizes the llama2 prompting method to generate responses. This method, named after the friendly and intelligent llama, enhances the model's ability to engage in meaningful conversations. The `prompt_model` function provided below demonstrates how the llama2 prompting method is implemented:
```python
def llama_prompt(
message: str,
chat_history: list = None,
system: str = None
) -> str:
do_strip = False
texts = [f"<s>[INST] <<SYS>>\n{system}\n<</SYS>>\n\n"] if system is not None else ["<s>[INST] "]
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
message = message.strip() if do_strip else message
texts.append(f"{message} [/INST]")
return "".join(texts)
```
The `prompt_model` function takes a `message` as input, along with the `chat_history` and `system_prompt`. It generates a formatted text that includes the system prompt, user inputs, and the current message. This approach allows LinguaMatic to maintain context and provide more coherent and context-aware responses.
## Contributing
We welcome contributions to enhance LinguaMatic's capabilities and improve its performance. If you encounter any issues or have suggestions for improvement, please feel free to submit a pull request or open an issue on [EasyDel](https://github.com/erfanzar/EasyDeL) GitHub repository.
|