erfanzar commited on
Commit
f4950d1
·
verified ·
1 Parent(s): 3e5a3a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -29,17 +29,20 @@ The model is finetuned Using a custom version of UltraChat on TPU-v4 POD using [
29
  LinguaMatic utilizes the llama2 prompting method to generate responses. This method, named after the friendly and intelligent llama, enhances the model's ability to engage in meaningful conversations. The `prompt_model` function provided below demonstrates how the llama2 prompting method is implemented:
30
 
31
  ```python
32
- def prompt_model(message: str, chat_history,
33
- system_prompt: str) -> str:
 
 
 
34
  do_strip = False
35
- texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
36
  for user_input, response in chat_history:
37
  user_input = user_input.strip() if do_strip else user_input
38
  do_strip = True
39
- texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
40
  message = message.strip() if do_strip else message
41
- texts.append(f'{message} [/INST]')
42
- return ''.join(texts)
43
  ```
44
 
45
  The `prompt_model` function takes a `message` as input, along with the `chat_history` and `system_prompt`. It generates a formatted text that includes the system prompt, user inputs, and the current message. This approach allows LinguaMatic to maintain context and provide more coherent and context-aware responses.
 
29
  LinguaMatic utilizes the llama2 prompting method to generate responses. This method, named after the friendly and intelligent llama, enhances the model's ability to engage in meaningful conversations. The `prompt_model` function provided below demonstrates how the llama2 prompting method is implemented:
30
 
31
  ```python
32
+ def llama_prompt(
33
+ message: str,
34
+ chat_history,
35
+ system: str
36
+ ) -> str:
37
  do_strip = False
38
+ texts = [f"<s>[INST] <<SYS>>\n{system}\n<</SYS>>\n\n"] if system is not None else "<s>[INST] "
39
  for user_input, response in chat_history:
40
  user_input = user_input.strip() if do_strip else user_input
41
  do_strip = True
42
+ texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
43
  message = message.strip() if do_strip else message
44
+ texts.append(f"{message} [/INST]")
45
+ return "".join(texts)
46
  ```
47
 
48
  The `prompt_model` function takes a `message` as input, along with the `chat_history` and `system_prompt`. It generates a formatted text that includes the system prompt, user inputs, and the current message. This approach allows LinguaMatic to maintain context and provide more coherent and context-aware responses.