Whisper Large v3 Fine-Tuned Finnish

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3344
  • Wer: 23.0167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5817 0.42 50 0.4090 37.5023
0.4669 0.84 100 0.4374 35.8274
0.3154 1.26 150 0.4848 39.0484
0.2192 1.68 200 0.4313 34.6954
0.1985 2.1 250 0.4346 34.5205
0.1125 2.52 300 0.4307 32.8640
0.1039 2.94 350 0.4278 31.3271
0.067 3.36 400 0.4043 33.5542
0.0577 3.78 450 0.3911 40.7050
0.0461 4.2 500 0.3966 30.4712
0.0264 4.62 550 0.3630 27.2041
0.0204 5.04 600 0.3632 26.0353
0.0092 5.46 650 0.3448 24.4156
0.006 5.88 700 0.3284 23.9278
0.002 6.3 750 0.3334 23.2836
0.0019 6.72 800 0.3344 23.0167

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for enakilci/whisper-large-v3-fi-800steps-16batch-2grad_steps-0.0001lr

Finetuned
(351)
this model

Dataset used to train enakilci/whisper-large-v3-fi-800steps-16batch-2grad_steps-0.0001lr

Evaluation results