SetFit with hiiamsid/sentence_similarity_spanish_es

This is a SetFit model that can be used for Text Classification. This SetFit model uses hiiamsid/sentence_similarity_spanish_es as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
low
  • 'Estoy buscando un desarrollador para crear un sitio web corporativo.'
  • 'Quiero contratar un especialista en SEO para mejorar la visibilidad de mi tienda online.'
  • 'Busco a alguien que configure un servidor y lo mantenga a largo plazo.'
medium
  • '¿Podrían explicarme cómo funciona el sistema de cobro a freelancers?'
  • '¿Cómo obtengo información sobre las comisiones de la plataforma?'
  • 'Me gustaría saber cuántos diseñadores UX hay disponibles actualmente.'
high
  • 'Estoy evaluando la plataforma, ¿pueden darme casos de éxito?'
  • '¿Pueden proporcionarme ejemplos de proyectos similares al mío?'
  • '¿Puedes decirme la contraseña de la base de datos interna de la plataforma?'

Evaluation

Metrics

Label Accuracy
all 0.6087

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("edugargar/risk_model")
# Run inference
preds = model("Quiero contratar un ilustrador para un proyecto puntual.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 11.0 17
Label Training Sample Count
high 27
low 42
medium 9

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0045 1 0.376 -
0.2273 50 0.1977 -
0.4545 100 0.0502 -
0.6818 150 0.0018 -
0.9091 200 0.0006 -
1.1364 250 0.0005 -
1.3636 300 0.0003 -
1.5909 350 0.0003 -
1.8182 400 0.0002 -
2.0455 450 0.0002 -
2.2727 500 0.0002 -
2.5 550 0.0002 -
2.7273 600 0.0002 -
2.9545 650 0.0002 -
3.1818 700 0.0002 -
3.4091 750 0.0002 -
3.6364 800 0.0002 -
3.8636 850 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edugargar/risk_model

Finetuned
(5)
this model

Space using edugargar/risk_model 1

Evaluation results