See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0f581be30ac3d477_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0f581be30ac3d477_train_data.json
type:
field_instruction: text
field_output: annotation
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dzanbek/f7f218d2-31c1-4c45-9224-136e0ecf258e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/0f581be30ac3d477_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f7f218d2-31c1-4c45-9224-136e0ecf258e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f7f218d2-31c1-4c45-9224-136e0ecf258e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
f7f218d2-31c1-4c45-9224-136e0ecf258e
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5334
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
15.639 | 0.0006 | 1 | 15.4848 |
11.6 | 0.0028 | 5 | 9.3170 |
2.848 | 0.0055 | 10 | 1.5961 |
0.7817 | 0.0083 | 15 | 0.7636 |
0.6277 | 0.0110 | 20 | 0.6655 |
0.6471 | 0.0138 | 25 | 0.6167 |
0.4796 | 0.0166 | 30 | 0.5794 |
0.4897 | 0.0193 | 35 | 0.5564 |
0.5998 | 0.0221 | 40 | 0.5419 |
0.5932 | 0.0248 | 45 | 0.5364 |
0.415 | 0.0276 | 50 | 0.5334 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 16
Model tree for dzanbek/f7f218d2-31c1-4c45-9224-136e0ecf258e
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO