wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-gtzan
This model is a fine-tuned version of ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.7145
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9771 | 1.0 | 225 | 1.7112 | 0.48 |
1.0169 | 2.0 | 450 | 1.1513 | 0.62 |
0.7104 | 3.0 | 675 | 0.8799 | 0.7 |
1.5425 | 4.0 | 900 | 0.7419 | 0.8 |
0.2908 | 5.0 | 1125 | 0.6713 | 0.8 |
0.8275 | 6.0 | 1350 | 0.6961 | 0.84 |
0.0298 | 7.0 | 1575 | 0.8689 | 0.82 |
0.0163 | 8.0 | 1800 | 0.7662 | 0.86 |
0.0162 | 9.0 | 2025 | 0.7143 | 0.88 |
0.2649 | 10.0 | 2250 | 0.7145 | 0.88 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.