SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 512 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dumyy/sft-bge-small")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Framework Versions
- Python: 3.8.19
- Sentence Transformers: 3.0.0
- Transformers: 4.37.2
- PyTorch: 1.13.1+cu117
- Accelerate: 0.21.0
- Datasets: 2.19.2
- Tokenizers: 0.15.1
Citation
BibTeX
- Downloads last month
- 193
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- cosine_pearson on MTEB AFQMCvalidation set self-reported33.537
- cosine_spearman on MTEB AFQMCvalidation set self-reported33.884
- euclidean_pearson on MTEB AFQMCvalidation set self-reported33.046
- euclidean_spearman on MTEB AFQMCvalidation set self-reported33.884
- main_score on MTEB AFQMCvalidation set self-reported33.884
- manhattan_pearson on MTEB AFQMCvalidation set self-reported32.993
- manhattan_spearman on MTEB AFQMCvalidation set self-reported33.820
- cosine_pearson on MTEB ATECtest set self-reported42.703
- cosine_spearman on MTEB ATECtest set self-reported43.359
- euclidean_pearson on MTEB ATECtest set self-reported45.615