Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4d445458bcc291df_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4d445458bcc291df_train_data.json
  type:
    field_input: counter_statement
    field_instruction: question
    field_output: counter_longer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/feddaca4-cb5c-4f8e-8b46-288b425ee1c3
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/4d445458bcc291df_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: feddaca4-cb5c-4f8e-8b46-288b425ee1c3
wandb_project: Gradients-On-Demand
wandb_runid: feddaca4-cb5c-4f8e-8b46-288b425ee1c3
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false

feddaca4-cb5c-4f8e-8b46-288b425ee1c3

This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
0.9424 0.0015 1 1.2899
1.0601 0.0046 3 1.2885
1.1404 0.0092 6 1.2818
1.0557 0.0138 9 1.2536
1.1208 0.0184 12 1.1905
0.986 0.0231 15 1.0825
0.8857 0.0277 18 0.9516
0.8378 0.0323 21 0.8335
0.7278 0.0369 24 0.7376
0.7035 0.0415 27 0.7180
0.6894 0.0461 30 0.6842

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dsakerkwq/feddaca4-cb5c-4f8e-8b46-288b425ee1c3

Adapter
(135)
this model